Importance of Hydride-Hydride Interaction in the Stabilization of LiH, NaH, KH, LiAlH4, NaAlH4, and Li3AlH6 as Solid-State Systems for Hydrogen Storage
International Journal of Computational and Theoretical Chemistry
Volume 8, Issue 1, June 2020, Pages: 11-18
Received: Dec. 11, 2019; Accepted: Dec. 24, 2019; Published: Jan. 7, 2020
Views 378      Downloads 92
Authors
James Tembei Titah, Department of Chemistry, University of New Brunswick, Fredericton, Canada
Franklin Che Ngwa, Department of Chemistry, University of New Brunswick, Fredericton, Canada
Mamadou Guy-Richard Kone, Faculty of Fundamental and Applied Sciences (UFR SFA), Nangui Abrogoua University, Abidjan, Ivory Coast
Article Tools
Follow on us
Abstract
The solid-state structures of LiH, NaH, KH, LiAlH4, NaAlH4 and Li3AlH6 have been explored in details as potential hydrogen-storage materials using computational electron density methods; the full-potential linearized augmented plane wave (FPLAPW) method plus local orbital (FPLAPW+lo) embodied in the WIEN2k package code. Topological analysis of their DFT-computed electron densities in tandem with Bader’s Atoms in Molecules (AIM) theory reveals a plethora of stabilizing interactions some of which are really strong. With the exception of NaH and KH, which do not contain the hydride-hydride bonding, the rest of the metal hydrides; LiH, LiAlH4, NaAlH4 and Li3AlH6 show an increasing number of hydride-hydride interactions that contribute to the stabilization of their three-dimensional (3-D) solid-state structures. Even though these hydride-hydride interactions are weaker compared to the M-H counterparts, their multiplicity greatly contributes to the stability of these metal hydrides. Results from their electron density studies reveal that the number of hydride-hydride interactions in these binary and complex metal hydrides increase with the complexity of the solid-state structures. LiAlH4 is more stable compared to NaAlH4, Li3AlH6, and LiH. NaH and KH were seen to be the least stable solid-state structures. It is suggested that the presence of these hydride-hydride interactions play a significant role in the mediation or understanding of the reaction mechanism leading to the release of hydrogen from these solid-state systems.
Keywords
Atoms in Molecules, DFT Calculations, Electron Density, Hydride-hydride Interaction, Topological Analysis
To cite this article
James Tembei Titah, Franklin Che Ngwa, Mamadou Guy-Richard Kone, Importance of Hydride-Hydride Interaction in the Stabilization of LiH, NaH, KH, LiAlH4, NaAlH4, and Li3AlH6 as Solid-State Systems for Hydrogen Storage, International Journal of Computational and Theoretical Chemistry. Vol. 8, No. 1, 2020, pp. 11-18. doi: 10.11648/j.ijctc.20200801.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
George, L.; Saxena, S. K. International Journal of Hydrogen Energy. 2010, 35, 5454-5470.
[2]
http://www.hydrogen.energy.gov/advisory_htac.html, HTAC Annual Report, 2010 – 2011 (accessed Nov. 10, 2011).
[3]
a. Johnson, J. K., Sholl, D. S. Annual Progress Report, DOE Hydrogen Program, 2008, 465-470, b. Pedicini, R.; Gatto, I.; Passalaguar, E. Solid-State Materials for Hydrogen Storage; Nanostructured Materials for Next-Generation Energy Storage and Conversion, 2018, 443.
[4]
a. Jain, I. P.; Chhagan, L.; Jain, A. Int. Hydrogen Energy. 2010, 35, 5133, b. Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. International Journal of hydrogen Energy, 2019, 04, 068.
[5]
http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/storage.pdf, Interim Update. 2011 (accessed Nov. 11, 2011).
[6]
a. Jensen, C. M.; Sun, D. L.; Srinivasan, S. S.; Kiyobayashi, T.; Kuriyama, N. Phys. Rev. B. 2004, 70, 060101-1-060101-4, b. Karsten, M. ChemBioEng Reviews. 2019, 6, 3, 72-80.
[7]
a. Kang, X. D.; et al, J. Alloys Compd. 2006, 424, 365-369, b, Mauro, F. S.; Marcello, B.; Mads, B.; Moretto, P. J. Power Sources. 2017, 342, 853-860.
[8]
Bader, R. F. W. Atoms in Molecules- A Quantum Theory, Clarendon Press, Oxford, 1990.
[9]
Bader, R. F. W. Chem. Eur. J. 2006, 12, 7769-7772.
[10]
Matta, C. F.; Boyd, R. J. An Introduction of the Quantum Theory of Atoms in Molecules. 2007, 1-25.
[11]
Peter, S.; Franklin, N. C.; James, T. T.; McGrady, G. S. Chem. Eur. J. 2012, 18, 9476-9480.
[12]
David, J. W.; James, T. T.; Franklin, N. C.; Traboulsee, T.; Flogeras, J.; McGrady, G. S. J. Am. Chem. Soc. 2011, 133, 16598-16604.
[13]
a. Popelier P. L. A, Joubert L., D. S. Kosov J. Phys. Chem. A 2001, 105, 8254-8261, b. James, T. T.; Franklin C. N.; Peter S.; Coulibaly W. K.; Mamadou G. R. K. International Journal of Computational and Theoretical Chemistry. 2019, 7, No. 2, 115-120.
[14]
Martin Pendas A. J. Chem. Phys. 2002, 117, 965-979, b. Remi C., Christine L., Bernard S., Applications of Topological Methods in Molecular Chemistry, 2016, 59-63.
[15]
Blaha, P.; Schwarz, K.; Madsen, G. H.; Kvasnicka, D.; Luitz, J In: Schwarz K (ed) FP-L/APW + lo programme for calculating crystal properties, Technische Universität Wien, Vienna, 2001.
[16]
Perdew, J. P.; Burke, S.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[17]
Desclaux, J. P. Comput. Phys. Commun. 1. 1969, 216.
[18]
Koelling, D. D.; Harmon, B. N. J. Phys. C 1977, 10, 3107, b. Peter S.; Franklin C.; James T.; Sean McGrady Chem. Eur. J. 2012, 18, 9476-9480.
[19]
Martin Pendas; Luana, V. The critic program, 1995-2003.
[20]
Calder, R. S.; Cochran, W.; Griffithis, D.; Lowde, R. D. J. Phys. Chem. Of Solids. 1962, 23, 621-632.
[21]
Shull, C. G.; Wollan, E. O.; Morton, G. A.; Davidson, W. L. Phys. Rev. 1948, 73, 842-847.
[22]
Taber, D. F.; Nelson, C. G. J. Org. Chem. 2006, 71, 8973–8974.
[23]
Popelier, P. L. A. J. Phys. Chem. A, 1998, 102, 1873-1878.
[24]
Custelcean, R.; Jackson, J. E. Chem. Rev. 2001, 101, 1963.
[25]
Liu, X.; McGrady, G. S.; Langmi, H. W.; Jensen, C. M. J. Am. Chem. Soc. 2009, 131, 14, 5032-5033.
[26]
Fichtner, P.; Frommen, M.; Leon, C. J. Phys. Chem. B, 2006, 110, 3051-3054.
[27]
Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170-173.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186