International Journal of Computational and Theoretical Chemistry

| Peer-Reviewed |

The Electronic Properties of the Silver Clusters in Gas Phase and Water

Received: 4 March 2015    Accepted: 4 March 2015    Published: 10 March 2015
Views:       Downloads:

Share This Article

Abstract

En this article are presented the theorics work for clarify the structure of all silver cluster in gas phase and water and are compareted the results with experimental data for see which levels of theory describe better the propriety of the silver cluster. Are calculated different value of the bond, ionization potentials and frequencies, electron affinities and binding energy method employed ab initio and relativystic bases. Are optimization with the following levels of theorie: HF/LANL1MB, HF/LANL2MB, HF/LANL2DZ, B3LYP/LANL1MB, B3LYP/LANL2MB, B3LYP/LANL2DZ, MP2/LANL2DZ, DFT/PBE/SDD and DFT/PBE/3-21G**.

DOI 10.11648/j.ijctc.s.2015030301.13
Published in International Journal of Computational and Theoretical Chemistry (Volume 3, Issue 3-1, May 2015)

This article belongs to the Special Issue Electronic Proprieties in Computational Chemistry

Page(s) 36-57
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Silver, Relativystic Effects, Metal Clusters, Silver Cluster in Water

References
[1] Huda M.N.; Ray A. K.; Phys. Rev. A, 2003, 67, 013210.
[2] Fournier R., J. Chem. Phys., 2001, 2165.
[3] Wnag B.; Chen X.; Wang J.; Zhao J., Surface Review and Letters, 2004, 11,15.
[4] Monti O.L.A.; Fourkas, J.T.;Nesbitt D.J., J. Phys. Chem. B, 2004, 108, 1604.
[5] Zhang L.;Yuu J.C., Ho Yin Yip; Li Q.; Kwong K. W.; Xu A. Wu; Wong Po K.; Langmuir, 2003, 19, 10372.
[6] Yuranava T.; Rincon A.G.; Bozzi A.G.; Parra S.; Pulgarin C.; Albers P.; Kiwi J., J. Photochem, Photobiol.A., 2003, 161, 27.
[7] Empedocles; Neuhauser R.; Shimizu K.; Bawendi M.G., Adv. Mater., 1999, 11, 1243.
[8] Link S.; El-Sayed , Int Rev. Phys. Chem., 2000, 19, 409.
[9] Andersen P.C.; Rowlen K.L., Appl. Spectroscop., 2002, 56, 124 A.
[10] Henglein A., Chem. Rev. 1989, 89, 1861.
[11] Kim S.H.; Ribeiro G.M.; Ohlberg D.A.A.; Williams R.S., Heath J.R., J.Phys. Chem., 1999, 103, 10341.
[12] Zuhuang J., Bactericidal nanosilver cloth and its making proces and use. Patent number CN 1387700, 2003.
[13] Chen C.M.S., Process for preparing antibacterial antimildew polyacrylic fibers and its filter net for air condiyioner. Patent number CN 1355335, 2003.
[14] Lee H.J.; Yeo .S.Y.; Jeong, J. Mat. Sci., 2003,38, 2199.
[15] Balasubramanian K., J. Phys. Chem., 1989, 93, 6585.
[16] Ichihara K.T.; Fujita Y.;Matsuo T., Sakuray T.; Matsuda H., Int. J. Mass, Spectrom. In. Proc., 1985, 67, 229; ibid. 1986, 74, 33.
[17] Handschuh H.; Cha C.Y.; Bechthold P.S.; Ganteför, Eberhatdt W., J. Chem. Phys., 1995, 102, 6406.
[18] Haslett T.L.; Bosnick K.A.; Fedrigo S.; Moskovits M., J. Chem. 1999, 11, 14, 6456,
[19] Wedum E.E.; Grant E.R.; Cheng P.Y.; Willy K.F.; Duncan M.A., J. Chem. Phys. Lett., 1991, 100, 6312.
[20] Félix C.; Sieber C.; Harbich W.; Buttet J.; Rabin I.; Schultze W. Ertl, Chem. Phys. Lett., 1999, 313, 195.
[21] Howard J.A.; Sutcliffe R.; Mile B., Surf. Sci., 1985, 156, 214.
[22] Haslett T.L.; Bosnick K.A.; Moskovits M., J. Chem. Phys., 1998, 108, 3453.
[23] Rabin I.; Jackschath C.; Schultze W., Z. Phys. D, 1991, 19, 153. Jackschath, Rabin I.; Schultze W., ibid, 1992, 22, 517.
[24] Allameddin G.; Hunter J., Cameron D.; Kappes M.M., Chem. Phys. Lett, 1992, 192, 122.
[25] Ho J.; Ervin K.M.; Lineberger, J. Chem. Phys. 1990, 93, 6987.
[26] Leopold, D.G.; Ho J.; Leneberger W.C., J. Chem. Phys., 1987, 86, 1715.
[27] Taylor K.J., Pettiette-Hall C.L.; Cheshnovsky O.; Smalley, J. Chem. Phys., 1992, 96, 3319.
[28] Handuschu H.; Chaa C. Y.; Bechtold P.S., Ganteför G.; Eberhatdt, J. Chem. Phys., 1995, 102, 6406.
[29] Okazaki T.; Saito Y., Kasuya A., Nishina Y., J. Chem. Phys., 1996, 104, 812.
[30] Tiggesbäumeker T.; Köller L., Meiwes-Broer K.; Liebesch A., Phys. Rev. A, 1993, 48, 1749.
[31] Minemoto, Iseda M., Kondow T., Eur. Phys. J.D., 1999, 9, 163.
[32] Bonačič Koutecký V.; Češpiva; Fantucci P.; Pittner J.; Koutecký J., J. Chem. Phys., 1994, 100, 1.
[33] Santamaria R.; Kaplan I. G.; Novaro O.; Chem. Phys. Letters, 1994, 218, 395.
[34] Liu Z.F.; Yim W.L.; Tse J.S.; Hafner J., Eur. Phys. J.D., 2000, 10,105.
[35] Zhao J.; Luo Y.; Wang Eur. Phys., J. D, 2001, 14, 309.
[36] Legge Sue F., Nyberg Graeme L., Peel Barrie J., J. Phys. Chem A, 2001, 105, 7905.
[37] Weis P.; Bierweiler T.; Gilb S.; Kappes M.M., Chem Phys. Lett., 2002, 355, 355.
[38] Mitrić, Hartmann M.; Stanca B.; Bonačič Koutecký V.; Fantucci, J. Phys. Chem., 2001, A 105, 8892.
[39] Poteau R.; Heully J.L.; Spiegelman F.; Z. Phys. D, 1997, 49, 479.
[40] Tian Z.M., Tian Y.; Wei W.M.; He T.J.; Chen D.M.; Liu F.C., Chem. Phis. Lett, 2006, 420, 450.
[41] Wedum E.E., Grant E.R., Chang P.Y.; Willey K.F.; Duncan M.A., J. Chem. Phys., 1994,100.
[42] Cheng P.Y.; Duncan M.A., Chem Phys. Lett., 1988, 152, 341.
[43] Ellis M.; Robles E.S.J., Millar I.A., Chem Phys. Letter.,1993, 201 132.
[44] Bonačič Koutecký V.; Veyeret V.; Mitric R., J. Chem. Phys., 2001, 115, 10450.
[45] Hay P.J.; Wadt W.R., J. Chem. Phys., 1985, 82, 284.
[46] Hay P.J.; Wadt W.R., J. Chem. Phys., 1985, 82, 299.
[47] Boo D. Wan; Ozaki Y.; Andersen L. H.; Lineberger W.C., J. Phys. Chem A., 1997, 101, 6688.
[48] Ho J.; Ervin K.M., Lienberger W.C., J. Chem. Phys. 1990, 93, 6987.
[49] Bagatur'yants A.A.; Safanov A.A., Stoll H.; Werner H.J., J. Chem. Phys., 1998, 109, 3096.
[50] Boo Wan D., Ozaki Y., Andersen L. H.; Lineberger W.C., J. Phys. Chem A., 1997, 101, 6688.
[51] Schultze W.; Becker H.U.; Minkwitz R.; Mansel K., Chem. Phys. Letters, 1978, 55, 59.
[52] Moskowits M., DiLella D.P., J. Chem. Phys., 1980, 72, 2267.
[53] Joward J.A.; Preston K.F.; J. Am. Chem. Soc. 1981, 103, 6226.
[54] Kernisant K., Thompson G.A., Lindsay D.M., J. Chem. Phys., 1985, 82, 4739.
[55] Morse M.D., Chem. Rev. 1986, 86, 1049.
[56] Bonačić-Koutecký V.; Češpiva L., J. Chem. Phys., 1993, 98, 7981.
[57] Basch H., J. Am. Chem. Soc., 1981, 103, 4657.
[58] Matulis V.E; Ivashkevich O.A.; Gurin V.S, J. Molec. Struct. (Theochem), 2003, 664-665, 291.
[59] Häkkinen H.; Moseler M.; Landman Uzi, Physical Rev. Lett., 2002, 89, 033401-1.
[60] Huda M.N.; Ray A.K., Eur. Phys. J. D, 2003, 22, 217.
[61] Boo Wan D.; Ozaki Y, Andersen L. H.; Lineberger W.C, J. Phys. Chem A., 1997, 101, 6688.
[62] Spasov V.A., Lee T.H. ; Maberry J.P. ; Ervin K.M., J. Chem. Phys., 1999, 110, 5208,
[63] Shi Y., Spasov V.A., Ervin K.M., J. Chem. Phys., 1999, 111, 938.
[64] Moore C.E., Atomic energy levels, NSRDS-NBS Circular No. 467, USGPO,Washington, 1949.
[65] Zuhuang J., Bactericidal nano-silver cloth and its making process and use. Patent number CN 1387700, 2003.
[66] Rabin I., Jackschath C.; Schulze W., Z. Phys. D, 1991, 19, 153,. Jackschath C., Rabin I.; Schulze W., ibid. 1992, 22, 517.
[67] Ekardt W., Phys. Rev. B, 1984, 29, 1558.
[68] C.E. Moore, Atomic energy levels, NSRDS-NBS Circular No. 467, USGPO,Washington, 1949.
[69] Foresman J.B., Frisch A., Gaussian, Inc. Pittsburgh, PA, 230-249, 1996.
[70] I. Rabin, W. Schultze, G. Ertl, Chemical Physics Letters, 312, 394-398, 1999.
[71] I. Rabin , W. Schulze, G. Ertl, C. Felix, C. Sieber, W. Harbich, J. Buttet, Chemical Physics Letters, 320, 59-64, 2000.
[72] E.C. Cosgriff, C.T. Chantler, C. Witte, L.F. Smale, C.Q. Tran, Physics Letters A, 343, 174-180, 2005.
[73] S. Fedrigo, W. Harbich, and J. Buttet, Physical Review B, 47(16), 10706-10715, 1993.
[74] George Alameddin, Joanna Hunter, Douglas Cameron and Manfred M. Kappes, Chemical Physics Letters, 192(1), 123-128, 1992.
[75] H. Handschuh, Chia-Yen Cha, P. S. Bechthold, G. Ganteför, and W. Eberhardt, J.Chem. Phys., 102(16), 6406-6422, 1995.
[76] I. Katakuse, T. Ichijara, International Journal of Mass Spectrometry and Ion Processes, 74, 33-41, 1986.
[77] W. Schulze, H. Becker, R. Minikwitz, K. Manzel, Chemical Physics Letters, 55 (1), 59-61, 1978.
[78] Joe Ho, Kent M. Ervin, W.C. Lineberger, J. Chem. Phys., 93 (10), 6987-7002, 1990.
[79] G. V. Krylova, A. M. Eremenko, N. P. Smirnova, S. Eustis, Theoretical and Experimental Chemistry, 41 (2), 2005.
[80] M.Virginia Popa, International Journal of Computational and Theoretical Chemistry online, 2 (6), 46-68.
Cite This Article
  • APA Style

    Mariana Virginia Popa. (2015). The Electronic Properties of the Silver Clusters in Gas Phase and Water. International Journal of Computational and Theoretical Chemistry, 3(3-1), 36-57. https://doi.org/10.11648/j.ijctc.s.2015030301.13

    Copy | Download

    ACS Style

    Mariana Virginia Popa. The Electronic Properties of the Silver Clusters in Gas Phase and Water. Int. J. Comput. Theor. Chem. 2015, 3(3-1), 36-57. doi: 10.11648/j.ijctc.s.2015030301.13

    Copy | Download

    AMA Style

    Mariana Virginia Popa. The Electronic Properties of the Silver Clusters in Gas Phase and Water. Int J Comput Theor Chem. 2015;3(3-1):36-57. doi: 10.11648/j.ijctc.s.2015030301.13

    Copy | Download

  • @article{10.11648/j.ijctc.s.2015030301.13,
      author = {Mariana Virginia Popa},
      title = {The Electronic Properties of the Silver Clusters in Gas Phase and Water},
      journal = {International Journal of Computational and Theoretical Chemistry},
      volume = {3},
      number = {3-1},
      pages = {36-57},
      doi = {10.11648/j.ijctc.s.2015030301.13},
      url = {https://doi.org/10.11648/j.ijctc.s.2015030301.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.s.2015030301.13},
      abstract = {En this article are presented the theorics work for clarify the structure of all silver cluster in gas phase and water and are compareted the results with experimental data for see which levels of theory describe better the propriety of the silver cluster. Are calculated different value of the bond, ionization potentials and frequencies, electron affinities and binding energy method employed ab initio and relativystic bases. Are optimization with the following levels of theorie: HF/LANL1MB, HF/LANL2MB, HF/LANL2DZ, B3LYP/LANL1MB, B3LYP/LANL2MB, B3LYP/LANL2DZ, MP2/LANL2DZ, DFT/PBE/SDD and DFT/PBE/3-21G**.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Electronic Properties of the Silver Clusters in Gas Phase and Water
    AU  - Mariana Virginia Popa
    Y1  - 2015/03/10
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijctc.s.2015030301.13
    DO  - 10.11648/j.ijctc.s.2015030301.13
    T2  - International Journal of Computational and Theoretical Chemistry
    JF  - International Journal of Computational and Theoretical Chemistry
    JO  - International Journal of Computational and Theoretical Chemistry
    SP  - 36
    EP  - 57
    PB  - Science Publishing Group
    SN  - 2376-7308
    UR  - https://doi.org/10.11648/j.ijctc.s.2015030301.13
    AB  - En this article are presented the theorics work for clarify the structure of all silver cluster in gas phase and water and are compareted the results with experimental data for see which levels of theory describe better the propriety of the silver cluster. Are calculated different value of the bond, ionization potentials and frequencies, electron affinities and binding energy method employed ab initio and relativystic bases. Are optimization with the following levels of theorie: HF/LANL1MB, HF/LANL2MB, HF/LANL2DZ, B3LYP/LANL1MB, B3LYP/LANL2MB, B3LYP/LANL2DZ, MP2/LANL2DZ, DFT/PBE/SDD and DFT/PBE/3-21G**.
    VL  - 3
    IS  - 3-1
    ER  - 

    Copy | Download

Author Information
  • Electronic and Telecomunication, Autonomous University of the Hidalgo State, Mexico

  • Sections