Hydrodynamic Characteristics of Expanded Channels with their Applications----the State-of-the-Art
American Journal of Civil Engineering
Volume 1, Issue 1, July 2013, Pages: 31-40
Received: May 21, 2013; Published: Jun. 30, 2013
Views 3069      Downloads 136
Author
Edward Ching-Ruey, LUO, Department of Civil Engineering, National Chi-Nan University, Nantou, TAIWAN.227 Gan-Cherng St. Taichung 40843, TAIWAN
Article Tools
PDF
Follow on us
Abstract
In this study, analytical-statistical solutions of the characteristics in gradually and abruptly expanded channel flows, such as velocity profile, turbulent shear stress profile and profiles of turbulent kinetic energy, energy dissipation rate, and dispersion coefficient are derived. Then, the comparisons of the analytical results are made with the results of 2-DH with depth-averaged numerical model solution and some experimental results.Good trends and agreements are obtained, and the expanding angletakes an important and relevant role on the main effect of these hydrodynamic items. The quasi-3D flow situation due to the downstream abruptly contracted channel with the upstream abruptly expanded channel is also shown and discussed. In this paper, the new contributions, ideas, clarifications and applications that resulted after the paper was given are presented.
Keywords
Velocity Profile, Turbulent Shear Stress, Turbulent Kinetic Energy, Energy Dissipation Rate, Dispersion, Turbulence, Expanded Flow, Hydrodynamics
To cite this article
Edward Ching-Ruey, LUO, Hydrodynamic Characteristics of Expanded Channels with their Applications----the State-of-the-Art, American Journal of Civil Engineering. Vol. 1, No. 1, 2013, pp. 31-40. doi: 10.11648/j.ajce.20130101.15
References
[1]
Rastogi A. K., Rodi W. (1978), Predictions of Heat and Mass Transfer in Open Channels, J. of the Hydraulics Division, ASCE, 104(3), 397–420.
[2]
Chen Y.-S., Kim S.-M. (1987), Computation of Turbulent Flows using an Extended k- " Turbulence Closure Model, CR-179204, NASA, p. 21.
[3]
Yakhot V., Orszag S. A., Thangam S., Gatski T. B., Speziale C. G. (1992), Development of Turbulence Models for Shear Flows by a Double Expansion Technique, Phys. Fluids A, 4(9).
[4]
Flokstra C. (1977), The Closure Problem for Depth-Average Two Dimensional Flow, Publication No. 190, Delft Hydraulics Laboratory, The Netherlands.
[5]
Wu W. (2004), Depth-Averaged 2-D Numerical Modeling of Unsteady Flow and Non-uniform Sediment Transport in Open Channels, accepted for publication by J. of Hydraulic Engineering, ASCE.
[6]
Elder J. W. (1959), The Dispersion of Marked Fluid in Turbulent Shear Flow, J. of Fluid Mechanics, Vol. 5, Part 4.
[7]
Fischer H. B., List E. J., Koh R. C. Y., Imberger J., Brooks N. H (1979), Mixing in Inland and Coastal Waters, Academic Press, New York.
[8]
Shyy W., Thakur S. S., Quyang H., Liu J., Blosch, E. (1997), Computational Techniques for Complex Transport Phenomenon, Cambridge University Press.
[9]
Rodi W. (1993), Turbulence Models and Their Aplication in Hydraulics, 3rd Ed., IAHR Monograph, Balkema, Rottedam.
[10]
Edward C. R. Luo (2013),"Hydrodynamic characteristics of Gradually Expanded channel Flow". IJHE 2013, 2(3): 35-41
[11]
Albertson, M. Dai, Y. B. Jensen, R. A. and Rouse, H. (1948), "Diffusion of submerged jets", Transactions, ASCE, Paper No. 2409.
[12]
Zhang, S.(1989), "Use of sudden enlargement for energy dissipation in hydraulic outlet conduits."
[13]
Yu Z. S.et al.(2011), "Numerical computations of flow in a finite diverging channel" J. of Zhejiang Univ-Sci A (ApplPhys&Eng) 2011 11(1).
[14]
Gayathri S. et al.(2011)," Global instabilities in diverging channel flows " Theoretical and computational fluid dynamics Vol.25. No. 1-4 pp. 53-64, 2011.
[15]
Tran Thuc (1991), "Two-dimensional morphological computations near hydraulic structures". Dissertation No. WA-91-2 Asian Institute of Technology, Bangkok, Thailand.
[16]
Gerhart, P.G. and Gross, R. J.(1985),"Fundamentals of fluid mechanics". Addison-Wesley Publishing Company, Inc., Canada,.
[17]
Yang C. S. et al.(2010)," Fluid flow and heat transfer in a horizontal channel with divergent top wall and heat from below ".J. of Heat transfer Vol.132, Issue 8, 2010.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186