Please enter verification code
Confirm
Detection of Cu(II) Ion in Water Using a Quartz Crystal Microbalance
Journal of Electrical and Electronic Engineering
Volume 4, Issue 2, April 2016, Pages: 13-17
Received: Apr. 6, 2016; Published: Apr. 7, 2016
Views 4675      Downloads 214
Authors
Chi-Yen Shen, Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
Yu-Min Lin, Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
Rey-Chue Hwang, Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
Article Tools
Follow on us
Abstract
Drinking water from a tap is a source of potential exposure to environmental contaminants. This requires that public water supplies should be regularly monitored for heavy metals. Many of heavy metal ions are retained and accumulated in water strongly. Consequently it has entered the food chain to threaten human health. A quartz crystal microbalance (QCM) based on a phosphate-modified dendrimer film was investigated for direct detection of Cu(II) metal ion in water. This QCM sensor exhibited the high sensitivity and the short response time to Cu(II) metal ion.
Keywords
Crystal Microbalance, Dendrimer, Metal Ion, Sensitivity
To cite this article
Chi-Yen Shen, Yu-Min Lin, Rey-Chue Hwang, Detection of Cu(II) Ion in Water Using a Quartz Crystal Microbalance, Journal of Electrical and Electronic Engineering. Vol. 4, No. 2, 2016, pp. 13-17. doi: 10.11648/j.jeee.20160402.12
References
[1]
O. Zagurskaya-Sharaevskaya and I. Povar, “Determination of Cu (II) ions using sodium salt of 4-phenylsemicarbazone 1, 2 - naphthoquinone-4-sulfonic acid in natural and industrial environments,” Ecological Processes, vol. 4, 2015, pp. 1-5.
[2]
M. Qadir, M. S. Javier, and J. Blanca, “Environmental risks and cost-effective risk management in wastewater use systems,” In: Wastewater, Springer, Netherlands, 2015, pp. 55–72.
[3]
Z. Zhang, Z. Chen, C. Qu, and L. Chen, “Highly sensitive visual detection of copper ions based on the shape-dependent LSPR spectroscopy of gold nanorods,” Langmuir, vol. 30, 2014, pp. 3625–3630.
[4]
M. Ghaedi, F. Ahmadi, and A. Shokrollahi, “Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry,” Journal of Hazardous Materials, vol. 142, 2007, pp. 272–278.
[5]
S. Pande, “Analytical applications of room-temperature ionic liquids: A review of recent efforts,” Analytica Chimica Acta, vol. 556, 2006, pp. 38–45.
[6]
J. S. Becker, M. Zoriy, A. Matusch, B. Wu, D. Salber, C. Palm, and J. S. Becker, “Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry,” Mass Spectrometry Reviews, vol. 29, 2010, pp. 156-175.
[7]
V. Chandrasekhar, S. Das, R. Yadav, S. Hossain, R. Parihar, G. Subramaniam, P. Sen, “Novel chemosensor for the visual detection of copper (II) in aqueous solution at the ppm level,” Inorg Chem, vol. 51, 2012, pp. 8664–8666.
[8]
G. Sauerbrey, “Verwendung von Schwingquarzen zur wägung dünner schichten und zur mikrowägung,” Zeitschrift für Physik, vol. 155, 1959, pp. 206–222.
[9]
X. Guo, Y. Yun, V. N. Shanov, H.B. Halsall, and W.R. Heineman, “Determination of trace metals by anodic stripping voltammetry using a carbon nanotube tower electrode,” Electroanalysis, vol. 23, 2011, pp. 1052-1259.
[10]
Q. Ji, S. B. Yoon, J. P. Hill, A. Vinu, J. S. Yu, and K. Ariga, “Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption,” J. Am. Chem. Soc., vol. 131, 2009, pp. 4220-4221.
[11]
K. Ariga, S. Ishihara, H. Abe, M. Li, and J. P. Hill, “Materials nanoarchitectonics for environmental remediation and sensing,” J. Mater. Chem., vol. 22, 2012, pp. 2369-2377.
[12]
L. Sartore, M. Barbaglio, L. Borgese, and E. Bontempi, “Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection,” Sens Actuators B Chem., vol. 155, 2011, pp. 539–544.
[13]
D. D. Erbahar, I. Gürol, G. Gümüş, E. Musluoğlu, Z. Z. Öztürk, V. Ahsen, and M. Harbeck, “Pesticide sensing in water with phthalocyanine based QCM sensors,” Sens. Actuators B, vol. 173, 2012, pp. 562-568.
[14]
A. M. Cao-Paz, L. Rodríguez-Pardo, and J. Fariña, “Application of the QCM in lead acid batteries electrolyte measurements,” Procedia Engineering, vol. 5, 2010, pp. 1260–1263.
[15]
A. M. Cao-Paz, L. Rodriguez-Pardo, and J. Farina, “Density and viscosity measurements in lead acid batteries by QCM sensor,” Proc. of 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 1290–1294.
[16]
A. M. Cao-Paz, L. Rodriguez-Pardo, J. Farina, and J. Marcos-Acevedo, “Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries,” Sensors, vol. 12, 2012, pp. 10604-10620.
[17]
M. Tominagaa, A. Ohirab, Y. Yamaguchic, and M. Kunitakeb, “Electrochemical, AFM and QCM studies on ferritin immobilized onto a self-assembled monolayer-modified gold electrode,” Journal of Electroanalytical Chemistry, vol. 566, 2004, pp. 323–329.
[18]
K. N. Huang, C. Y. Shen, S. H. Wang, and C. H. Hung, “Development of quartz crystal microbalance-based immunosensor for detecting alpha-fetoprotein,” Instrumentation Science & Technology, vol. 44, 2013, pp. 311-324.
[19]
S. H. Wang, C. Y. Shen, T. C. Weng, P. H. Lin, J. J. Yang, I. F. Chen, S. M. Kuo, S. J. Chang, Y. K. Tu, Y. H. Kao, and C. H. Hung, “Detection of cartilage oligomeric matrix protein using a quartz crystal microbalance,” Sensors, vol. 10, 2010, pp. 11633-11643.
[20]
E. Biemmi, A. Darga, N. Stock, and T. Bein, “Direct growth of Cu3(BTC) 2 (H2O) 3•xH2O thin films on modified QCM-gold electrodes – Water sorption isotherms,” Microporous and Mesoporous Materials, vol. 114, 2008, pp. 380–386.
[21]
M. W. P. L. Baars and E. W. Meijer, “Host-guest chemistry of dendritic molecules,” Topics in Current Chemistry, vol. 210, Springer, New York, 2000, pp. 132-178.
[22]
G. R. Newkome and C. D. Shreiner, “Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1 → 2 branching motifs: an overview of the divergent procedures,” Polymer, vol. 49, 2008, pp. 1-173.
[23]
L. Rodriguez-Pardo, J. Fariña, C. Gabrielli, H. Perrot, and R. Brendel “Resolution in quartz crystal oscillator circuits for high sensitivity microbalance sensors in damping media,” Sens. Actuators B, vol. 103, 2004, pp. 318–324.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186