City as a System Supported by Artificial Intelligence
Urban and Regional Planning
Volume 5, Issue 2, June 2020, Pages: 32-39
Received: Feb. 25, 2020; Accepted: Apr. 7, 2020; Published: Apr. 28, 2020
Views 330      Downloads 138
Authors
Anna Bazan-Krzywoszańska, Faculty of Civil Engineering Architecture and Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
Robert Lach, Spatial Data System Sp. z o.o., Gliwice, Poland
Maria Mrówczyńska, Faculty of Civil Engineering Architecture and Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
Article Tools
Follow on us
Abstract
The primary objective of urban policy is to strengthen the capacity of cities to develop in such a way as to create an efficient, compact, sustainable and coherent structure, and thus to be strong and competitive. The potential associated with reducing urban flows, combined with effective management and use of natural resources, depends on sustainable development, but also on factors such as: compactness of form, morphology and urban structure of settlement units, among which cities become a space with great potential for saving natural resources, e.g. energy. The new approach towards thinking about city and planning its space entails consequences. The study of cities’ functionality is more and more involved with the process of integrating often dispersed, interdisciplinary databases. They provide information about the status and operation of a city system, based on qualitative and quantitative data. Earlier access to broad data sets was quite limited, but with the liberalization of access to satellite imagery data in Europe, and with more frequent operational functioning of several constellation of various image resolutions, practically each city on Earth can start to apply spatio-temporal monitoring of growth of urban organisms. It is already possible to monitor urban change with medium, high and very high resolution imagery at the entire Earth surface. These monitoring techniques procedures involve continuous observation and supervision. These types of activities allow to monitor the implementation of spatial policy processes, with regard to the set short- and long-term objectives. They can also help to initiate feedback processes related to possible adjustment of targets, thus – enriching decision makers with a broader, or better decision support, improving decision-making process with the use of big geospatial data. Space planning took on a new significance, since taking into consideration shaping the living conditions in the context of that process’s implications. Given the above, there is a need to develop tools to support conscious and effective implementation of spatial policy objectives. The complexity of processes occurring in space, as well as the willingness to understand and describe them, results in the development of new research techniques. The tools based on artificial intelligence are very helpful. The process of digital transformation of society and economy with the participation of algorithms is great developmental challenges of the XXI century. Public services in this system must be deeply rich with data. For this reason, in recent years, data has become one of the main or even the most important production factor. The acquisition, collection, analysis, processing and use of data and the continuous development of algorithms is becoming a fundamental competence of countries and cities.
Keywords
City Space Management, GIS, SDI, 3D/4D City Models, CityGML, Big Data
To cite this article
Anna Bazan-Krzywoszańska, Robert Lach, Maria Mrówczyńska, City as a System Supported by Artificial Intelligence, Urban and Regional Planning. Special Issue: Management of the City - A Multi-Branch Task. Vol. 5, No. 2, 2020, pp. 32-39. doi: 10.11648/j.urp.20200502.11
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Bazan-Krzywoszańska, GIS technology as a tool for protecting landscape and cultural values in spatial planning, Structure, 2018, p. 129-137.
[2]
Artificial Intelligence Development Policy in Poland, Ministry of Digital Affairs, https://www.gov.pl/web/digitalization, typescript.
[3]
https://www.cnet.com/pictures/iss-night-shots/10/
[4]
Leitch, Modified CRISPR Can Manipulate Gene Activity in Neurons, 2019, https://www.labroots.com/trending/genetics-and-genomics/15458/modified-crispr-manipulate-gene-activity-neurons
[5]
M. Gosh, A Brain Cell and The Universe, 2008, https://walkingthefenceline.wordpress.com/2008/05/15/a-brain-cell-and-the-universe/
[6]
J. Penc, Decyzje w zarządzaniu, Wydawnictwo Profesjonalnej Szkoły Biznesu, Kraków 1995.
[7]
P. Ozimek, J. Tarko, P. Łabędź, Cyfrowe modele analizy krajobrazu bazujące na cyfrowych modelach terenu systemów informacji przestrzennej, Prace Komisji Krajobrazu Kulturowego PTG, 14, Sosnowiec 2010.
[8]
K. Nermend, Metody analizy wielokryterialnej i wielowymiarowej we wspomaganiu decyzji, Wydawnictwo Naukowe PWN, Warszawa 2017.
[9]
J. Berger, Statistical decision theory. Foundations, concepts and methods, Springer Verlag, GmbH 1990.
[10]
W. Edwards, B. Fasolo Decision Technology, Annual Review of Psychology, T. 52, 2001, p. 581-606.
[11]
Mironowicz, Czynniki przestrzenne, kulturowe i społeczno-ekonomiczne w zarządzaniu rozwojuem miast, w: Zarządzanie rozwojem przestrzennym miast (red.) Lorens P., Martyniuk-Pęczek J., Miasto-Metropolia-Region, Akapit-DTP, Gdańsk, 2014, p. 120-137.
[12]
P. Śleszyński, Propozycja kompleksowej koncepcji wskaźników zagospodarowania i ładu przestrzennego, w: Wskaźniki zagospodarowania i ładu przestrzennego w gminach (red.) P. Śleszyński, Biuletyn Komitet Przestrzennego Zagospodarowania Kraju, Polska Akademia Nauk, Z. 252, Warszawa, 2013, p. 176-231.
[13]
Urban sustainability issues – What is a resource-efficient city? European Environment Agency Technical Report 23, 2015. https://www.eea.europa.eu/publications/resource-efficient-cities.
[14]
A resource‑efficient Europe — Flagship initiative under the Europe 2020 Strategy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (COM (2011) 21-26 January 2011).
[15]
C. M. Agudelo-Vera, A. R. Mels, K. J. Keesman, H. H. H. Rijnaarts H. H. M., Resource management as a key factor for sustainable urban planning, Journal of Environmental Management, 92, 2011, p. 2295–2303.
[16]
Fischer, T. H. Kolbe, F. Lang, A. B. Cremers, W. Förstner, L. Plümer, V. Steinhage, Extracting Buildings from Aerial Images Using Hierarchical Aggregation in 2D and 3D, Compuer Vision and Image Understanding, 72, 1998, p. 185-203.
[17]
T. H. Kolbe, C. Negel, A. Stadler, CityGML – OGC Standard for Photogrammetry?, Photogrammetric Week, 2009, p. 265-277.
[18]
J. Stoter, H. D. Ploeger, Property in 3D — registration of multiple use ofspace: current practice in Holland and the needfor a 3D cadastre, Computers, Environment and Urban Systems, 27, 2003, p. 553-570.
[19]
F. Biljecki, K. Kumar, C. Nagel, CityGML Application Domain Extension (ADE): overview of developments. Open geospatial data, softw. stand. 3, 13, 2018.
[20]
Giorgio, Austrian Institute of Technology, TU Delft Welcome ADE Energy 1.0, 9th ADE Energy Workshop, SIG Group Meeting, Aachen, June 26th 2018.
[21]
T. Kutzner, T. Kolbe, 38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018.
[22]
P. Ozimek, A. Böhm, A. Ozimek, W. Wańkowicz, Planowanie przestrzeni o wysokich walorach krajobrazowych przy wykorzystaniu cyfrowych analiz terenu wraz z oceną ekonomiczna, Politechnika Krakowska, Kraków 2013.
[23]
Kobryń, Wielokryterialne wspomaganie decyzji w gospodarowaniu przestrzenią, Difin SA, Warszawa 2014.
[24]
J. Malczewski, J. Jaroszewicz, Podstawy analiz wielokryterialnych w systemach informacji geograficznej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2018.
[25]
G. Grekousis G., Artificial neural networks and deep learning in urban geography: A systematic review and meta- analysis, Computers, Environment and Urban Systems. https://doi.org/10.1016/j.compenvurbsys.2018.10.008, 2018.
[26]
Kosko, Fuzzy kognitive maps, International Journal of Man-Machine Studies, 24, 1986, p. 65-75.
[27]
X. Zhang, G. Xu, X. Mou, et al., A convolutional neural network for the detection of asynchronous steady state motion visual evoked potential IEEE Trans. Neural Syst. Rehabil. Eng., PP (99), 2019, p. 1.
[28]
Yan-Wen Li, Ke Cao, Establishment and application of intelligent city building information model based on BP neural network model, Computer Communications, Volume 153, 2020, Pages 382-389, ISSN 0140-3664, https://doi.org/10.1016/j.comcom.2020.02.013.
[29]
P. Antsaklis, A Brief Introduction to the Theory and Applications of Hybrid Systems, Special Issue on Hybrid Systems: Theory and Applications. https://ieeexplore. ieee.org/stamp/stamp.jsp?arnumber=871299, 2000.
[30]
H. Shafizadeh-Moghadam, A. Tayebi, M. Ahmadlou, M. Reza Delavar, M. Hasanlou, Integration of genetic algorithm and multiple kernel support vector regression for modeling urban growth, Computers, Environment and Urban Systems, 65, 2017, p. 28-40.
[31]
M. Beim, Modelowanie procesu suburbanizacji w aglomeracji poznańskiej, Bogucki Wydawnictwo Naukowe, Poznań 2009.
[32]
A. Stephenson, A. Lopez, Persistent Change Monitoring, MAXAR PCM methodology description, 2020.
[33]
M. Sudmanns, D. Tiede, H. Augustin, S. Lang, Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass, International Journal of Digital Earth, 2019, DOI: 10.1080/17538947.2019.1572799.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186