Sanitary Biosecurity Test against Hospital Acquired Fungal Infections: The Role of Hemolymph from the Cochineal Insect
American Journal of Clinical and Experimental Medicine
Volume 2, Issue 5, September 2014, Pages: 97-102
Received: Sep. 3, 2014; Accepted: Sep. 19, 2014; Published: Sep. 30, 2014
Views 2541      Downloads 130
Authors
Fernando Garía-Gil De Muñoz, Faculty of Science and Technology, Biology School, Simon Bolivar University, Mexico, D. F
Ignacio Del Río-Dueñas, Grana Cochinilla Worldwide Diffusion Centre “Tlapanochestli”. SM., Oaxaca, Mexico
Rodrigo Ramos-Zúñiga, Neuroscience Department, CUCS, University of Guadalajara, Guadalajara, Mexico
Fidel Hernández-Hernández, Laboratory of Molecular Entomology, Department of Molecular Pathogenesis of CINESTAV-IPN, IPN 2508, Mexico, D. F
H. Raúl. Pérez-Gómez, Infectious Pathology Institute, Hospital Civil De Guadalajara, Guadalajara, Mexico
Ana Macías-Ornelas, Neuroscience Department, CUCS, University of Guadalajara, Guadalajara, Mexico
Ramiro López-Elizalde, Hospital Civil J. I. Menchaca, Guadalajara, Mexico
Article Tools
Follow on us
Abstract
Background: Fungal infections are significant risk factors for nosocomial infections. They are associated with environmental spores and they are potential colonizers in hospital infrastructure, instruments or specific vectors. Usually they are identified by means of microbiology and culture media for definitive diagnosis. The objective is to evaluate the usefulness of the application of a colorimetric assay that originates from an endemic insect in Mexico (Dactilopius Coccus costa); It implies a specific qualitative biochemical reaction. It is also available to be used as a quick field test in health control. Design: Prospective, transversal, descriptive, randomized sampling with control reference test. Methods: A transversal randomized sampling from surfaces, materials, solutions and organic-sanitary waste from different known risk areas in a hospital institution with a large number of patients. Samples were processed using the qualitative test, examined by colorimetric evaluations and compared with positive controls (zymosan and aspergillus spores). Results: Samples showed no evidence of fungal colonization, unlike controls, which resulted positive. The resulting sensitivity was 100%. Conclusions: First qualitative pilot test to be used in the health care field, which proved to be useful for the monitoring and timely detection of fungi of biomedical interest. The method is practical. This essay validates the potential use of a quick qualitative test for preventive control of fungal infections in hospitals.
Keywords
Carminic Acid, Dactylopius, Hemolymph, Intrahospital Infection, Fungal Infection Diagnosis
To cite this article
Fernando Garía-Gil De Muñoz, Ignacio Del Río-Dueñas, Rodrigo Ramos-Zúñiga, Fidel Hernández-Hernández, H. Raúl. Pérez-Gómez, Ana Macías-Ornelas, Ramiro López-Elizalde, Sanitary Biosecurity Test against Hospital Acquired Fungal Infections: The Role of Hemolymph from the Cochineal Insect, American Journal of Clinical and Experimental Medicine. Vol. 2, No. 5, 2014, pp. 97-102. doi: 10.11648/j.ajcem.20140205.12
References
[1]
Blanco J. Infecciones hospitalarias. En: Dubay EC, Grubb RD (eds.), Infecciones hospitalarias: prevención y control. Colombia: Médica Panamericana 1974, 1-5.
[2]
Castañeda M, Requelme F, Poma J. Infecciones intrahospitalarias: Un círculo vicioso. Revista Médica Herediana 2011, 22(4): 202-203.
[3]
Staib F. Fungi in the home and hospital environment. Mycoses 1996, 39(1): 26-29.
[4]
Perdelli F, Cristina ML, Sartini M, Spagnolo AM, Dallera M, Ottria G, et. al. Fungal Contamination in Hospital Environments. Infect Control Hosp Epidemiol 2006, 27(1): 44-47.
[5]
Pastor C, Najera MJ, Arroyo OE. Fungal and Bacterial Contamination on Indoor Surfaces of a Hospital in Mexico. Microbiol 2012, 5(3):460-464.
[6]
Adell C, Trilla A, Bruguera M, Giol M, Sallés M, Bayas JM, et. al. Infecciones nosocomiales por hongos oportunistas: análisis de una serie de noticias publicadas en la prensa española. Med Clin (Barc) 2000, 114(7): 259-263.
[7]
Gaye O, Samb K, Ndir O, Diallo S, Ndiaye M, Diedhiou M, et. al. Fungi in the hospital environment and infectious risk. Dakar Med 1992, 37(1):11-14.
[8]
Araujo R, Cabral JP, Rodrigues AG. Air filtration systems and restrictive access conditions improve indoor air quality in clinical units: Penicillium as a general indicator of hospital indoor fungal levels. Am J Infect Control 2008, 36(2):129-134.
[9]
Arvanitidou M, Kanellou K, Constantinides TC, Katsouyannopoulos V. The occurrence of fungi in hospital and community potable waters. Lett Appl Microbiol 1999, 29(2):81-84.
[10]
Anaissie EJ, Penzak SR, Dignani MC. The hospital water supply as a source of nosocomial infections: a plea for action. Arch Intern Med 2002, 162(13):1483-1492.
[11]
Rivero L, Álvarez A, Ballesté I, Villarreal A, Galbán O. Tendencias y pronósticos de las infecciones hospitalarias y sus gastos asociados. (Spanish). Revista Cubana de Obstetricia y Ginecologia 2009, 35(4):150‐161.
[12]
Arellano J, Sarti E. Infecciones por hongos y neutropenia en un hospital pediátrico de tercer nivel. (Spanish). Salud Pública de México 2008, 50(3):197-198.
[13]
El-Nawawy AA, Abd El-Fattah MM, Metwally HA, Barakat SS, Hassan IA. One year study of bacterial and fungal nosocomial infections among patients in pediatric intensive care unit (PICU) in Alexandria. J Trop Pediatr 2006, 52(3): 185-191.
[14]
Beck-Sagué C, Jarvis WR. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. J Infect Dis 1993, 167(5): 1247-1251.
[15]
Robles M, Dierssen T, Llorca FJ, Rodríguez P, Roiz MP. Prevención de la infección nosocomial de origen fúngico: verificación de la bioseguridad ambiental en quirófanos. Rev Clin Esp 2005, 205(12): 601-606.
[16]
Sánchez J. Control de la bioseguridad ambiental. Revista Iberoamericana de micología 2001, 28(19): 1-10.
[17]
Hao ZF, Ao JH, Hao F, Yang RY, Zhu H, Zhang J. Environment surveillance of filamentous fungi in two tertiary care hospitals in China. Chin Med J (Engl) 2011, 124(13): 1970-1975.
[18]
Hayette MP, Christiaens G, Mutsers J, Barbier C, Huynen P, Melin P, et. al. Filamentous fungi recovered from the water distribution system of a Belgian university hospital. Med Mycol 2010, 48(7): 969-974.
[19]
Kamei K. Identification of Clinically Isolated Fungi and their Culture Collection System in Japan. (English). Japanese Journal of Medical Mycology 2008, 49(3): 187-189.
[20]
Kim KY, Kim YS, Kim D. Distribution characteristics of airborne bacteria and fungi in the general hospitals of Korea. Ind Health 2010, 48(2): 236-243.
[21]
Krajewska-Kułak E, Łukaszuk C, Hatzopulu A, Bousmoukilia S, Terovitou Ch, Amanatidou A, et. al. Indoor air studies of fungi contamination at the Department of Pulmonology and Internal Medicine in Kavala Hospital in Greece. Adv Med Sci 2009, 54(2): 264-268.
[22]
López L, Tiraboschi I, Schijman M, Bianchi M, Guelfand L, Cataldi S. Fungemias en hospitales de la Ciudad de Buenos Aires, Argentina. Rev Iberoam Micol 2012, 29(3): 144–149.
[23]
Mallea M, Renard M, Charpin J. Fungal flora in a hospital milieu. Pathol Biol (Paris) 1983, 31(3): 177-181.
[24]
Wu PC, Su HJ, Ho HM. A comparison of sampling media for environmental viable fungi collected in a hospital environment. Environ Res 2000, 82(3): 253-257.
[25]
De Vos MM, Nelis HJ. An improved method for the selective detection of fungi in hospital waters by solid phase cytometry. J Microbiol Methods 2006, 67(3): 557-655.
[26]
Gniadek A, Macura AB. Air-conditioning vs. presence of pathogenic fungi in hospital operating theatre environment. Wiad Parazytol 2011, 57(2): 103-106.
[27]
Ioos R, Iancu G. European collaborative studies for the validation of PCR-based detection tests targeting regulated fungi and oomycetes. EPPO Bulletin 2008, 38(2): 198-204.
[28]
Lebeau B, Pinel C, Grillot R, Ambroise-Thomas P. Fungal and parasitic nosocomial infections: importance and limitations of disinfection methods. Pathol Biol (Paris) 1998, 46(5): 335-340.
[29]
Nagano Y, Walker J, Loughrey A, Millar C, Goldsmith C, Rooney P, et. al. Identification of airborne bacterial and fungal species in the clinical microbiology laboratory of a university teaching hospital employing ribosomal DNA (rDNA) PCR and gene sequencing techniques. Int J Environ Health Res 2009, 19(3): 187-199.
[30]
Nica M, Fonteyne PA, Dascålu A, Biolan T, Mozes E, Gala JL. Molecular detection and identification of pathogenic fungi in clinical samples. Romanian Journal of Infectious Diseases 2010, 13(1): 6-10.
[31]
Rao CY, Cox-Ganser JM, Chew GL, Doekes G, White S. Use of surrogate markers of biological agents in air and settled dust samples to evaluate a water-damaged hospital. Indoor Air 2005, 15(9): 89-97.
[32]
Sautour M, Dalle F, Olivieri C, L'ollivier C, Enderlin E, Salome E, et. al. A prospective survey of air and surface fungal contamination in a medical mycology laboratory at a tertiary care university hospital. Am J Infect Control 2009, 37(3): 189-194.
[33]
Saville SP, Thomas DP, López-Ribot JL. Use of genome information for the study of the pathogenesis of fungal infections and the development of diagnostic tools. Rev Iberoam Micol 2005, 22(4): 238-241.
[34]
Tsui CK, Woodhall J, Chen W, Lévesque CA, Lau A, Schoen CD, et. al. Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus 2011, 2(2): 177-189.
[35]
De la Fuente JR, Narro J, Tapia R, Campillo J, Tamayo J, Velázquez O, et. al. Manual para la vigilancia epidemiológica de las infecciones nosocomiales. Epidemiología de la Secretaría de Salud México. 1997; NORMA Oficial Mexicana NOM-026-SSA2-1998.
[36]
Zapata F, Cardona N. Lo que debemos saber sobre los métodos de sensibilidad a los antifúngicos. Revista CES Medicina 2012, 26(1): 71-83.
[37]
González AM, Presa M, Latorre MG, Lura MC. Detección de metabolistos fúngicos con actividad tóxica mediante bioensayo sobre Artemia salina. (Spanish). Rev Iberoam Micol 2007, 24:59-61.
[38]
Ramos-Zúñiga R. El nocheztli perdido de Autlán. Universidad de Guadalajara. Guadalajara, 2006, 1-93.
[39]
Hernández-Hernández Fde L, de Muñoz FG, Rojas-Martínez A, Hernández-Martínez S, Lanz-Mendoza H. Carminic acid dye from the homopteran Dactylopius coccus hemolymph is consumed during treatment with different microbial elicitors. Arch Insect Biochem Physiol 2003, 54(1): 37-45.
[40]
Caselín S, Llanderal C, Méndez SJ, Ramírez A, Hernández FL et. al. Hemocytes of the cochineal insect: ultrastructure. Arch Insect Biochem Physiol 2010, 73(3): 176-192.
[41]
González M, Méndez J, Carnero A, Lobo MG, Afonso A. Optimizing conditions for the extraction of pigments in cochineals (Dactylopius coccus Costa) using response surface methodology. J Agric Food Chem 2002, 50(24): 6968-6974.
[42]
Sugimoto N, Tada A, Suematsu T, Arifuku K, Saito T, Ihara T, et. al. Absolute quantification of carminic acid in cochineal extract by quantitative NMR. Shokuhin Eiseigaku Zasshi, 51(1): 19-27.
[43]
Ziegler R, Willingham LA, Engler DL, Tolman KJ, Bellows D, Van Der Horst DJ, et. al. A novel lipoprotein from the hemolymph of the cochineal insect, Dactylopius confusus. Eur J Biochem 1999, 261(1): 285-290.
[44]
Tsuchiya M, Asahi N, Suzuoki F, Ashida M, Matsuura S. Detection of peptidoglycan and beta-glucan with silkworm larvae plasma test. FEMS Immunol Med Microbiol 1996, 15(2-3):129-34.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186