Mesenchymal Stem Cell Therapy for Breast Cancer: Challenges Remaining
International Journal of Biomedical Science and Engineering
Volume 2, Issue 6-1, December 2014, Pages: 20-24
Received: Jul. 19, 2014; Accepted: Dec. 19, 2014; Published: Jan. 27, 2015
Views 3986      Downloads 240
Armel Herve Nwabo Kamdje, Department of Biomedical Sciences, University of Ngaoundere, PO Box 454, Ngaoundere-Cameroon
Paul Faustin Seke Etet, Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Al-Qaseem, Saudi Arabia
Kiven Erique Lukong, Department of Biochemistry College of Medicine Room 4D30.5 Health Sciences Bldg University of Saskatchewan, 107 Wiggins Road Saskatoon, SK. S7N 5E5 Canada
Article Tools
Follow on us
The treatment of breast cancer, the most common malignancy among women worldwide, remains puzzling partly due to the resistance to therapeutics, which associates with the heterogeneity of case clinical presentations, and limits in the current understanding of the pathogenesis of solid cancers. Notably, it remains unclear: (i) whether breast cancer starts strictly as a local disease before metastasizing to the lymph nodes and distant organs, i.e. if cancer initiating cells are local cells that have undergone epithelial to mesenchymal transition; (ii) or if breast cancer is intrinsically a systemic disease started by malfunctioning circulating mesenchymal stem cells (MSCs) infiltrating the breast stroma to start tumorigenesis. Such limits in our understanding of breast cancer biology have been slowing the development of MSC-based therapies exploiting the ability of these cells to home into tumorigenic sites, kill cancer cells, stop neoangiogenesis, and repair damaged tissues, as well as therapeutic approaches using these cells as vehicle for gene therapy and for delivering anticancer therapeutics, which are potential game changing therapeutic approaches, particularly in currently incurable cancers and intractable cases. Major drawbacks to MSC-based therapy implementation and use in breast cancer are herein briefly discussed.
Stem Cells, Breast Cancer, Microenvironment, Signaling Pathways, Therapy, Therapeutic Resistance
To cite this article
Armel Herve Nwabo Kamdje, Paul Faustin Seke Etet, Kiven Erique Lukong, Mesenchymal Stem Cell Therapy for Breast Cancer: Challenges Remaining, International Journal of Biomedical Science and Engineering. Special Issue: Cancer Research. Vol. 2, No. 6-1, 2014, pp. 20-24. doi: 10.11648/j.ijbse.s.2014020601.13
Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int.J.Cancer 2001; 94:153-156
Roukos DH, Murray S, Briasoulis E. Molecular genetic tools shape a roadmap towards a more accurate prognostic prediction and personalized management of cancer. Cancer Biol.Ther. 2007; 6:308-312
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J.Clin.Invest 2011; 121:2750-2767
Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J.Cell Biochem. 2009; 106:984-991
Duenas F, Becerra V, Cortes Y, Vidal S, Saenz L, Palomino J, De Los RM, Peralta OA. Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses. BMC.Vet.Res. 2014; 10:154
Galderisi U, Giordano A, Paggi MG. The bad and the good of mesenchymal stem cells in cancer: Boosters of tumor growth and vehicles for targeted delivery of anticancer agents. World J.Stem Cells 2010; 2:5-12
Bhattacharya A. Methylselenocysteine: a promising antiangiogenic agent for overcoming drug delivery barriers in solid malignancies for therapeutic synergy with anticancer drugs. Expert.Opin.Drug Deliv. 2011; 8:749-763
Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Vigano L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J.Control Release 2014; 192:262-270
Lim ML, Ooi BN, Jungebluth P, Sjoqvist S, Hultman I, Lemon G, Gustafsson Y, Asmundsson J, Baiguera S, Douagi I, Gilevich I, Popova A, Haag JC, Rodriguez AB, Lim J, Lieden A, Nordenskjold M, Alici E, Baker D, Unger C, Luedde T, Vassiliev I, Inzunza J, Ahrlund-Richter L, Macchiarini P. Characterization of stem-like cells in mucoepidermoid tracheal paediatric tumor. PLoS.One. 2014; 9:e107712
El-Jawhari JJ, El-Sherbiny YM, Jones EA, McGonagle D. Mesenchymal stem cells, autoimmunity and rheumatoid arthritis. QJM. 2014; 107:505-514
Eseonu OI, De BC. Homing of mesenchymal stem cells: mechanistic or stochastic? Implications for targeted delivery in arthritis. Rheumatology.(Oxford) 2014;
Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008; 267:271-285
Nwabo Kamdje AH, Seke Etet PF, Vecchio L, Muller JM, Krampera M, Lukong KE. Signaling pathways in breast cancer: Therapeutic targeting of the microenvironment. Cell Signal. 2014; 26:2843-2856
Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, Radisky DC, Ferrone S, Knutson KL. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009; 69:2887-2895
Payne KK, Manjili MH. Adaptive immune responses associated with breast cancer relapse. Arch.Immunol.Ther.Exp.(Warsz.) 2012; 60:345-350
Hanson S, D'Souza RN, Hematti P. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng Part A 2014; 20:2162-2168
Clover AJ, Kumar AH, Isakson M, Whelan D, Stocca A, Gleeson BM, Caplice NM. Allogeneic mesenchymal stem cells, but not culture modified monocytes, improve burn wound healing. Burns 2014;
Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS.One. 2014; 9:e107001
Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A. Cell and gene therapy using mesenchymal stem cells (MSCs). J.Autoimmun. 2008; 30:121-127
Seke Etet PF, Nwabo Kamdje AH, Mbo Amvene J, Aldebasi Y, Farahna M, Vecchio L. Stromal control of chronic lymphocytic leukemia cells. Research & Reports in Biology 2013; 4:23-32
El-Haibi CP, Karnoub AE. Mesenchymal stem cells in the pathogenesis and therapy of breast cancer. J.Mammary.Gland.Biol.Neoplasia. 2010; 15:399-409
Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J.Natl.Cancer Inst. 2004; 96:1593-1603
Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005; 65:3307-3318
Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol.Cancer Ther. 2006; 5:755-766
Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M, Marini FC. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 2007; 67:11687-11695
Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, Mayer-Kuckuk P, Glod J, Banerjee D. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 2007; 25:520-528
Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL, Tomchuck SL, Honer zu BK, Danka ES, Henkle SL, Scandurro AB. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc.Natl.Acad.Sci.U.S.A 2009; 106:3806-3811
Duan X, Guan H, Cao Y, Kleinerman ES. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer 2009; 115:13-22
Ryu H, Oh JE, Rhee KJ, Baik SK, Kim J, Kang SJ, Sohn JH, Choi E, Shin HC, Kim YM, Kim HS, Bae KS, Eom YW. Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-beta and suppress the growth of MCF-7 human breast cancer cells. Cancer Lett. 2014; 352:220-227
Zhou Y, Zuo D, Wang M, Zhang Y, Yu M, Yang J, Yao Z. Effect of truncated neurokinin-1 receptor expression changes on the interaction between human breast cancer and bone marrow-derived mesenchymal stem cells. Genes Cells 2014; 19:676-691
Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC.Cancer 2013; 13:535
Leng L, Wang Y, He N, Wang D, Zhao Q, Feng G, Su W, Xu Y, Han Z, Kong D, Cheng Z, Xiang R, Li Z. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy. Biomaterials 2014; 35:5162-5170
Vegh I, Grau M, Gracia M, Grande J, de la Torre P, Flores AI. Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development. Cancer Gene Ther. 2013; 20:8-16
May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011; 13:202
Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS.One. 2009; 4:e4992
El-Haibi CP, Bell GW, Zhang J, Collmann AY, Wood D, Scherber CM, Csizmadia E, Mariani O, Zhu C, Campagne A, Toner M, Bhatia SN, Irimia D, Vincent-Salomon A, Karnoub AE. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc.Natl.Acad.Sci.U.S.A 2012; 109:17460-17465
Rappa G, Mercapide J, Lorico A. Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. Am.J.Pathol. 2012; 180:2504-2515
Jain P, Alahari SK. Breast cancer stem cells: a new challenge for breast cancer treatment. Front Biosci.(Landmark.Ed) 2011; 16:1824-1832
Ito Y, Iwase T, Hatake K. Eradication of breast cancer cells in patients with distant metastasis: the finishing touches? Breast Cancer 2012; 19:206-211
Yu Y, Ramena G, Elble RC. The role of cancer stem cells in relapse of solid tumors. Front Biosci.(Elite.Ed) 2012; 4:1528-1541
Malik B, Nie D. Cancer stem cells and resistance to chemo and radio therapy. Front Biosci.(Elite.Ed) 2012; 4:2142-2149
Biddle A, Gammon L, Fazil B, Mackenzie IC. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition. PLoS.One. 2013; 8:e57314
Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JH, Proia TA, Jin DX, Reinhardt F, Ploegh HL, Wang Q, Gupta PB. Epithelial-to-mesenchymal transition activates PERK-eIF2alpha and sensitizes cells to endoplasmic reticulum stress. Cancer Discov. 2014; 4:702-715
Guo W. Concise review: breast cancer stem cells: regulatory networks, stem cell niches, and disease relevance. Stem Cells Transl.Med. 2014; 3:942-948
Ferrand N, Gnanapragasam A, Dorothee G, Redeuilh G, Larsen AK, Sabbah M. Loss of WISP2/CCN5 in estrogen-dependent MCF7 human breast cancer cells promotes a stem-like cell phenotype. PLoS.One. 2014; 9:e87878
Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, Rusinova E, Zhang G, Wang C, Zhu H, Yao J, Zeng YX, Evers BM, Zhou MM, Zhou BP. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 2014; 25:210-225
Wang KH, Kao AP, Chang CC, Lin TC, Kuo TC. Bisphenol A at environmentally relevant doses induces cyclooxygenase-2 expression and promotes invasion of human mesenchymal stem cells derived from uterine myoma tissue. Taiwan.J.Obstet.Gynecol. 2013; 52:246-252
Rameshwar P. Would cancer stem cells affect the future investment in stem cell therapy. World J.Exp.Med. 2012; 2:26-29
Austin J, Kimble J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 1987; 51:589-599
Henrique D, Hirsinger E, Adam J, Le R, I, Pourquie O, Ish-Horowicz D, Lewis J. Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr.Biol. 1997; 7:661-670
Chan EF, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in beta-catenin. Nat.Genet. 1999; 21:410-413
Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22:103-114
Zhu AJ, Watt FM. beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 1999; 126:2285-2298
Polakis P. Wnt signaling and cancer. Genes Dev. 2000; 14:1837-1851
Zhang Y, Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 2001; 410:599-604
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc.Natl.Acad.Sci.U.S.A 2003; 100:3983-3988
Chirgwin JM. The stem cell niche as a pharmaceutical target for prevention of skeletal metastases. Anticancer Agents Med.Chem. 2012; 12:187-193
Arend RC, Londono-Joshi AI, Straughn JM, Jr., Buchsbaum DJ. The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecol.Oncol. 2013; 131:772-779
Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci.Signal. 2014; 7:re8
Klauzinska M, Castro NP, Rangel MC, Spike BT, Gray PC, Bertolette D, Cuttitta F, Salomon D. The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin.Cancer Biol. 2014;
Fazilaty H, Mehdipour P. Genetics of breast cancer bone metastasis: a sequential multistep pattern. Clin.Exp.Metastasis 2014; 31:595-612
Deonarain MP, Kousparou CA, Epenetos AA. Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs. 2009; 1:12-25
Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 2013; 95:2235-2245
Chung SS, Giehl N, Wu Y, Vadgama JV. STAT3 activation in HER2-overexpressing breast cancer promotes epithelial-mesenchymal transition and cancer stem cell traits. Int.J.Oncol. 2014; 44:403-411
Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res.Ther. 2013; 4:70
Kuo CH, Liu CJ, Lu CY, Hu HM, Kuo FC, Liou YS, Yang YC, Hsieh MC, Lee OK, Wu DC, Wang SS, Chen YL. 17beta-estradiol inhibits mesenchymal stem cells-induced human AGS gastric cancer cell mobility via suppression of. Int.J.Med.Sci. 2014; 11:7-16
Orciani M, Lazzarini R, Scartozzi M, Bolletta E, Mattioli-Belmonte M, Scalise A, Di BG, Di PR. The response of breast cancer cells to mesenchymal stem cells: a possible role of inflammation by breast implants. Plast.Reconstr.Surg. 2013; 132:899e-910e
Pearl RA, Leedham SJ, Pacifico MD. The safety of autologous fat transfer in breast cancer: lessons from stem cell biology. J.Plast.Reconstr.Aesthet.Surg. 2012; 65:283-288
Smalley M, Piggott L, Clarkson R. Breast cancer stem cells: obstacles to therapy. Cancer Lett. 2013; 338:57-62
Krumboeck A, Giovanoli P, Plock JA. Fat grafting and stem cell enhanced fat grafting to the breast under oncological aspects--recommendations for patient selection. Breast 2013; 22:579-584
Bibber B, Sinha G, Lobba AR, Greco SJ, Rameshwar P. A review of stem cell translation and potential confounds by cancer stem cells. Stem Cells Int. 2013; 2013:241048
Lin JJ, Huang CS, Yu J, Liao GS, Lien HC, Hung JT, Lin RJ, Chou FP, Yeh KT, Yu AL. Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells. Breast Cancer Res. 2014; 16:R29
Ke CC, Liu RS, Suetsugu A, Kimura H, Ho JH, Lee OK, Hoffman RM. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells. PLoS.One. 2013; 8:e69658
Shangguan L, Ti X, Krause U, Hai B, Zhao Y, Yang Z, Liu F. Inhibition of TGF-beta/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells 2012; 30:2810-2819
Lee RH, Yoon N, Reneau JC, Prockop DJ. Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell 2012; 11:825-835
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186