Effects of Faujasite X and Y Zeolites on the 1,1,1-Trichloro-2,2’ bis(p-chlorophenyl)ethane (DDT) Degradation during Water Purification
International Journal of Environmental Protection and Policy
Volume 1, Issue 1, May 2013, Pages: 9-15
Received: May 31, 2013; Published: Jun. 30, 2013
Views 3102      Downloads 248
Authors
Chrispin Ounga Kowenje, Maseno University, P.O. Box 333-40105, Maseno, Kenya
Elly Tetty Osewe, Kisumu Polytechnic, P. O. Box 143-40100, Kisumu, Kenya
Joseph Owuor Lalah, Technical University of Kenya, P. O. Box 52428-00200, Nairobi, Kenya
Article Tools
PDF
Follow on us
Abstract
The ability of zeolites to abstract and denature organochloride pesticides finds application in water purification practices. In this study, activated faujasite X and Y zeolites were separately exposed to 1, 2 and 4 ppm concentrations of 1,1,1-trichloro-2,2’ bis(p-chlorophenyl) ethane (dichloro dipheny trichloroethane - DDT) water solutions. For the 1 ppm DDT solutions, the resultant degradation products and residual DDT were minimal with concentrations in zeolite treatments reducing to below detection limit (0.005 ppm) in about 2 hours. In addition, the rate of dissipation was found to somewhat depend on the levels of DDT concentration and the type of zeolite used. The main degradation product in samples exposed to faujasite X was dichloro dipheny dichloroethylene (DDE) whereas in the faujasite Y exposed samples, both the DDE and dichloro diphenyl dichloroethane (DDD) were obtained.
Keywords
Faujasites, DDT, Degradation Products, Rates, Water Purification
To cite this article
Chrispin Ounga Kowenje, Elly Tetty Osewe, Joseph Owuor Lalah, Effects of Faujasite X and Y Zeolites on the 1,1,1-Trichloro-2,2’ bis(p-chlorophenyl)ethane (DDT) Degradation during Water Purification, International Journal of Environmental Protection and Policy. Vol. 1, No. 1, 2013, pp. 9-15. doi: 10.11648/j.ijepp.20130101.12
References
[1]
Elola, A. díaz, E. Ordoñez, S. 2009. A new procedure for the treatments of Organochlorinated off-gases combining adsorption and catalytic hydrodechlorination, Environ. Sci. Technol. 43, (6) 1999-2004.
[2]
Madadi, V. O. Wandiga, S. O. Jumba, I. O. 2006. The status of persistent organic pollutants in Lake Victoria catchment. Proceedings of the 11th World Lakes Conference, Nairobi Kenya, 2, 107-112.
[3]
Tian, H. Li, J. Mu, Z. Li, L. Hao, Z. 2009. Effects of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep. Purif. Technol., 66 (1), 84-89.
[4]
Getenga, Z. M. Kengara, F. O. Wandiga, S. O. 2004. Determination of Organochlorine pesticide in soil and water from river Nyando Drainage system within lake Victoria Basin, Bull. Environ. Contam. Toxicol. 72(2), 335 -342.
[5]
Wandiga, S. O. Ongeri, D. K. M. Mbuvi, L. Lalah, J. O. Jumba, I. O. 2002. Accumulation, distribution and metabolism of 14C-1,1,1 - trichloro-2,2-bis(pchlorophenyl) ethane (DDT) residues in a tropical marine ecosystems, Environ. Technol. 23 (11), 1285-1292.
[6]
Bitman, J. H. Cecil, C. Harris, S. J. Fries, G. F, 1971. Comparison of DDT effect on pentobarbital metabolism in Rats and Quails, J. Agric. Food Chem. 19 (2), 333-338.
[7]
Dai, R-L. Zang, G-Y. Gu, X-Z. Wang, M. K. 2008. Sorption of 1,1,1-trichloro-2,2ʹ bis(p-chlorophenyl)ethane (DDT) by Clays and OrganoClays, Environ. Geochem. Health, 30 (5), 479-488.
[8]
Barasa, M. W. Lalah, J. O. Wandiga, S. O. 2009. Seasonal variation in concentration of organochlorine pesticide residues in tropical estuaries sediments along the Indian Ocean coast of Kenya, Mar. Pollut. Bull. 54 (12), 1979-1984.
[9]
Hussain, A. Magbool, U. Asi, M. 1994. Studies on the dissipation of 14C-DDT from water and solid surfaces, J. Environ. Sci. Health, Part B, 29 (1), 177-184.
[10]
Sayles, G. You. D, Wang, G. M. Kupferle, M. J. 1997. DDT, DDD, and DDE dechlorination by zero-valent iron, Environ. Sci. Technol., 31 (12), 3448-3454.
[11]
Feng, J. Lim, T.T. 2005. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn, Chemosphere, 59 (9), 1267–1277.
[12]
Anil, K. D. 1993. Wastewater treatment; Environmental Chemistry, 3rd Edition. New Age International Ltd, New Delhi. India, 197-207.
[13]
Tian, H. Li, J. Zou, L. Mu, Z. Hao, Z. 2009. Removal of DDT from aqueous solutions using mesoporous silica materials, J. Chem. Technol. and Biotechnol, 84, (4) 490-496.
[14]
Kanyi, C. W. Doetschman, D. C. Schulte, J. T. Yan, K. Wilson, R. E. Jones, B. R. Kowenje, C. O. Yang, S-W. 2006. Linear, Primary Monohaloalkane Chemistry in NaX and NaY Faujasites with and without Na0 –Activation. Zeolites as Nucleophilic Reactions II, Microporous and Mesoporous Mater. 92, 295-302.
[15]
Stamires, D. N. 1973. Properties of the zeolite, faujasite, substitutional series: a review with new data, Clays Clay Miner. 21 (5), 379-389.
[16]
Baczynski, T. P. Pleissner, D. Grotenhuis, T. 2010. Anaerobic biodegradation of organochlorine pesticides in contaminated soil – Significance of temperature and availability. Chemosphere, 78 (1), 22–28.
[17]
Wandiga, S. O. Lalah, J. O. Dauterman, W. C. 1996. Mineralization, volatilization and degradation of Carbofuran in soil sample from Kenya, Bull, Environ, contam. Toxicol. 56 (1), 37-41.
[18]
Keerthinarayana, S. Vijjayashankar, Y. Shivalingaidh, N. Visweswariah, B. K. 1990. Sorption mechanisms of DDT from aqueous phase, J. Environ. Sci. Health, Part B, 25 (4), 493-509.
[19]
Lalah, J. O. Acholla, F. V. Wandiga, S. O. 1994. The fate of 14C-p,p’-DDT in Kenya tropical soils, J. Environ. Sci. Health B, 29 (1), 57-64.
[20]
Wandiga, S. O. Mghenyi, J. M. 1988. Isotope techniques for studying the fate of persistent pesticides in the tropics CRP report, IAEA,Vienna, 21-89.
[21]
USEPA (US Environmental Protection Agency); 1989. Environmental Fate and Effects Division, Pesticide Environmental Fate One Line Summary: DDT (p, p'), Washington, DC.
[22]
Kale, S. P. Murthy, N. B. Raghu, K. K. Sherkhane, P. D. Carvalho, F. P. 1999. Studies on degradation of 14C-DDT in the marine environment, Chemosphere, 39 (6), 959-968.
[23]
House, J. E. 1997. Principles of Chemical Kinetics, Wm. C. Brown Publishers. Chicago, USA, 40-45.
[24]
Kowenje, C. O. Jones, B. R. Doetschman, D. C. Yang, S-W. Schulte, J. T. DeCoste, J. Kanyi, C. W. 2010. Effects of copper exchange levels on complexation of ammonia in Cu (II)-exchanged X zeolites, S. Afri. J. Chem. 63 (1), 6-10.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186