Heavy Metal Content (Hg. Pb. Cd and Fe) of CHU-MEL Effluents Discharged in the Cotonou Lagoon (Benin)
International Journal of Environmental Protection and Policy
Volume 7, Issue 4, July 2019, Pages: 109-116
Received: Jul. 11, 2019; Accepted: Aug. 12, 2019; Published: Aug. 26, 2019
Views 111      Downloads 9
Authors
Elias Alexandre Setondji Adanlokonon, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Abomey-Calavi, Benin; Department of Zoology, University of Abomey-Calavi, Abomey-Calavi, Benin
Boni Christophe Chabi, Department Fundamental and Biological Sciences, University of Parakou, Parakou, Benin
Wilfried Gbedode Kanhounnon, Department of Chemistry, Faculty of Science and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
Dogbe Clement Adjahouinou, Department of Zoology, University of Abomey-Calavi, Abomey-Calavi, Benin
Etiennette Dassi, Ministry of the Environment and Sustainable Development, Cotonou, Benin
Marc Sohounou, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Abomey-Calavi, Benin
Adjouavi Yvette Deguenon, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Abomey-Calavi, Benin
Patrick Aleodjrodo Edorh, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Abomey-Calavi, Benin
Article Tools
Follow on us
Abstract
This study is conducted to characterize the heavy metal contamination of CHU-MEL effluents discharged into the Cotonou lagoon in order to assess the potential risk of these discharges for this ecosystem. To achieve this objective, the effluents collected at the end of the pipes acting as weirs in the lagoon were analyzed. The results from physico-chemical and heavy metals analyzes have made it possible to assess the quality of the effluents. The values of pH, temperature, conductivity, TDS and dissolved oxygen measured in situ are, on average, 7.95; 29.60°C; 639.60 μS/cm; 457.48 mg/l and 0.22 mg/L. The determination of heavy metals in the effluents showed low levels of contamination. The average levels of lead, cadmium, mercury and total iron are 0.1727 mg/L, 0.0261 mg/L, 0.0010 mg/L and 0.25 mg/L, respectively. This study shows that most of the parameters studied in the CHU-MEL effluent are in compliance with the standards. These effluents therefore pose a low risk for the aquatic organisms of the receiving environment, this added to the dilution effect of the effluents in the waters of the lagoon. However, the continual discharge of these effluents into the lagoon with their share of heavy metals.
Keywords
Aquatic Environment, Heavy Metal, Hospital Effluents, Pollution
To cite this article
Elias Alexandre Setondji Adanlokonon, Boni Christophe Chabi, Wilfried Gbedode Kanhounnon, Dogbe Clement Adjahouinou, Etiennette Dassi, Marc Sohounou, Adjouavi Yvette Deguenon, Patrick Aleodjrodo Edorh, Heavy Metal Content (Hg. Pb. Cd and Fe) of CHU-MEL Effluents Discharged in the Cotonou Lagoon (Benin), International Journal of Environmental Protection and Policy. Vol. 7, No. 4, 2019, pp. 109-116. doi: 10.11648/j.ijepp.20190704.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
OMS (Organisation mondiale de la santé) (1968). Lutte contre la pollution des eaux dans les pays en voie de développement. Rapport technique n°404. OMS. Genève, 42.
[2]
Manda B. K., G. Colinet, L. André, A. C. Manda, J. P. Marquet and J. C. Micha (2010). Evaluation de la contamination de la chaîne trophique par les éléments traces (Cu, Co, Zn, Pb, Cd, U, V et As) dans le bassin de la Lufira supérieure (Katanga/RD Congo). Tropicultura 28 (4), 246-252.
[3]
C. Boillot (2008). Évaluation des risques écotoxicologiques liés aux rejets d’effluents hospitaliers dans les milieux aquatiques: Contribution à l’amélioration de la phase «caractérisation des effets». Thèse de doctorat, Institut National des Sciences Appliquées de Lyon, Lyon, France, 292p.
[4]
Boillot, C., C. Bazin, F. Tissot-Guerraz, J. Droguet, M. Perraud, J. C. Cetre, D. Trepo and Y. Perrodin (2008). Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities. Science of the Total Environment 403, 113 - 129.
[5]
Berrada S., F. Z. Squalli, H. T. Squalli, M. Hannin, A. El Oualti and A. El Ouali Lalami (2014). Recyclage des effluents du service d’hémodialyse de l’hôpital Al Ghassani de la ville de Fès: caractérisation avant et après traitement. J. Mater. Environ. Sci 5 (S1), 2265-2277.
[6]
Toure A., A. Garat, C. Diop, M. Cabral, M. J. Epote, E. Leroy, M. Fall, A. Diouf, B. Dehon and D. Allorge (2016). Présence de métaux lourds et de résidus médicamenteux dans les effluents des établissements de santé de Dakar (Sénégal). Int. J. Biol. Chem. Sci 10 (3), 1422-1432. DOI: http://dx.doi.org/10.4314/ijbcs.v10i3.40.
[7]
Atolaye B. O. and M. O. Aremu (2007). Bioaccumulation of some trace elements in the body parts of fish species associated with soil sediment and water from Eoemaganiâ confluence in nasarawa state, Nigeria. EJEAFChe 6 (5), 2001-2008.
[8]
Canli M. and Ö. A. M. Kalay (1998). Level of heavy metals (Cd, Pb, Cu, Cr and Ni) in tissue of Cyprinus carpio, Barbus capito and Chondrostoma regium from the Seyhan River, Turkey. Turkish Journal of Zoology 22, 149-157.
[9]
République du Bénin (2006). Décret N°2006-087 du 08 mars 2006 portant politique nationale d’hygiène hospitalière en république du Bénin. Journal Officiel de la République du Bénin.
[10]
Makoutodé M., O. Touré, A. Yarou and A. M. d’Almeida (2000). Traitement des déchets liquides au Centre National Hospitalier Universitaire de Cotonou au Bénin. Le Bénin Médical 16, 29-34.
[11]
Adanlokonon, E. A. S., Kanhounnon W. G., Chabi B. C., Adjahouinou D. C., Koumolou L., Bonou B., Fiogbe E. D. and P. A. Edorh (2018). Physicochemical and microbiological characterization of effluents from the “Centre Hospitalier Universitaire de la Mère et de l’Enfant Lagune (CHU-MEL)” discharged in the Cotonou lagoon in Benin. Int. J. Biol. Chem. Sci 12 (4), 1955-1964. DOI: 10.4314/ijbcs.v12i4.34.
[12]
Adjahouinou, D. C., B. Yehouenou, M. N. D. Liady and E. D. Fiogbe (2014). Caractérisation bactériologique des eaux résiduaires brutes de la ville de Cotonou (Bénin). Journal of Applied Biosciences 78, 6705-6713.
[13]
Adam K. S. and M. Boko (1993). Le Bénin (collection n° 26, 5eme edn). Edicef: France.
[14]
US. EPA (United States Environmental Protection Agency). (2007). Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. METHOD 7473. Retrieved May 28, 2019, from http://www.epa.gov/SW-846/pdfs/7473.pdf.
[15]
Snedecor G. W. and W. G. Cochram (1962). Factorial Experiments. In Statistical methods- Oxford and IBM Publishing Co. Calcutta, 339-380.
[16]
Adingra A. A., A. N. Kouadio, M. C. Blé, A. M. Kouassi (2012). Bacteriological analysis of surface water collected from the Grand-Lahou lagoon, Côte d’ivoire. African Journal of Microbiology Research 6 (13), 3097-3105.
[17]
MEHU (Ministère de l’Environnement de l’Habitat et de l’Urbanisme)/Bénin (2001). Décret N°2001-109 de 4 avril 2001 fixant les normes de qualité des eaux résiduaires en République du Bénin.
[18]
EEAA (Egyptian Environmental Affairs Agency) (1994). Law number 4 of 1994 promulgating the environmental law and its executive regulation, Egypt.
[19]
MATE (Ministère de l’aménagement du territoire et de l’environnement) (1998). Arrêté du 2 février 1998 relatif aux prélèvements et à la consommation d’eau ainsi qu’aux émissions de toute nature des installations classées pour la protection de l’environnement soumises à autorisation, J. Officiel de la France 52, 32-47.
[20]
MATEE (Ministère de l’Aménagement, du Territoire, de l’Eau et de l’Environnement) /Royaume du Maroc (2005). Décret n° 2-04-553 24 janvier 2005 relatif aux déversements, écoulements, rejets, dépôts directs ou indirects dans les eaux superficielles ou souterraines.
[21]
Emmanuel E., Y. Perrodin, G. Keck, J. M. Blanchard and P. Vermande (2005a). Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network. J. Hazard Mater 117, 1–11.
[22]
Rodier J., Bazin C., Broutin J. P., Chambon P., Champsaur H., Rodier L. (1996). L’Analyse de l’Eau. (8e édn). Paris: Dunod, 1384p.
[23]
Mara D. (1980). Sewage treatment in hot climates. Ed. John Willey & sons. 168 p.
[24]
Rodier J., B. Legube, N. Merlet, R. Brunet (2009). L’Analyse de l’Eau (9e édn). Paris: Dunod. 1579.
[25]
Hartemann P., A. Hautemaniere and M. Joyeux (2005). La problématique des effluents hospitaliers. Hygiène 13 (5), 369-374.
[26]
Leprat P., C. Maftah, and C. Dagot (2002). Genotoxic activity of hospital wastewater: Behaviour of antineoplastic drugs in WWTP. In: New life for waste. Mons - Belgique. Province de Hainault, InNISMa, RECYWALL, FPMs., 122-126.
[27]
R. Mohee (2005). Medical wastes characterization in healthcare institutions in Mauritius. Waste Management 25 (6), 575-581.
[28]
S. Cornaz (2004). Evaluation du statut trophique d’un canal de drainage sous l’impact des pollutions d’origines diffuses et ponctuelles, le cas du grand canal de plaine de Rhône. Institut de Géographie de l'Université de Lausanne, Lausanne, 180.
[29]
Hamaidi M. S., F. Hamaidi, A. Zoubiri, F. Benouaklil and Y. Dhan (2009). Etude de ladynamique des populations phytoplanctoniques et résultats préliminaires sur les blooms toxiques a cyanobacteries dans le barrage de Ghrib (Ain Defla-Algérie). European Journal of Scientific Research 32 (3), 369-380.
[30]
Oliveira H., Lopes T., Almeida T., Pereira M. L., Santos C. (2012). Cadmium-induced genetic instability in mice testis. Hum Exp Toxicol., 31 (12), 1228-1236. http://dx.doi.org/10.1177/0960327112445937.
[31]
Prozialeck W. C and J. R. Edwards (2012). Mechanisms of Cadmium-Induced Proximal Tubule Injury: New Insights with Implications for Biomonitoring and Therapeutic Interventions. J Pharmacol Exp Ther. 343 (1), 2-12. http://dx.doi.org/10.1124/jpet.110.166769.
[32]
Amouei A., Asgharnia H., Fallah H., Faraji H., Barari R., Naghipour D. (2015). Characteristics of Effluent Wastewater in Hospitals of Babol University of Medical Sciences, Babol, Iran. Health Scope, 4 (2), 1-4.
[33]
Orias F. and Y. Perrodin (2013). Characterisation of the ecotoxicity of hospital effluents: A review. Science of the Total Environment 454-455, 250-276.
[34]
Lim S. R. and J. M. Schoenung (2010). Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays. Journal of Hazardous Materials 177, 251-259. DOI: 10.1016/j.jhazmat.2009.12.025.
[35]
Baby J, Raj JS, ET Biby, Etsankarganesh P, Jeevitha MV, Ajisha SU, Rajan SS. (2010). Toxic effect of heavy metals on aquatic environment. Int. J. Biol. Chem. Sci., 4 (4), 939-952. http://ajol.info/index.php/ijbcs.
[36]
D. Mama (2010). Méthodologie et résultats du diagnostic de l’eutrophisation du lac Nokoué (Benin). Thèse de doctorat, Université de Limoges. 157.
[37]
Emmanuel E., K. Hanna, C. Bazin, G. Keck, B. Clement and Y. Perrodin (2005b). Fate of glutaraldehyde in hospital wastewater and combined effects of glutaraldehyde and surfactants on aquatic organisms. Environ Int 31: 399–406.
[38]
Emmanuel E., Y. Perrodin, J. M. Blanchard, G. Keck and P. Vermande (2004). Approche méthodologique de l’évaluation des risques écotoxicologiques des effluents hospitaliers vis-à-vis de la step locale et de l'écosystème aquatique récepteur. Revue francophone d’écologie industrielle 35 (3): 18-27.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186