Comparison of Daily Precipitation Bias Correction Methods Based on Four Regional Climate Model Outputs in Ouémé Basin, Benin
Hydrology
Volume 4, Issue 6, November 2016, Pages: 58-71
Received: Nov. 26, 2016; Accepted: Dec. 5, 2016; Published: Jan. 7, 2017
Views 4271      Downloads 277
Authors
Yèkambèssoun N’Tcha M’Po, National Polytechnic Institute, Yamoussoukro, Côte d'Ivoire; National Institute of Water, University of Abomey-Calavi, Abomey, Calavi, Benin
Agnidé Emmanuel Lawin, National Institute of Water, University of Abomey-Calavi, Abomey, Calavi, Benin
Ganiyu Titilope Oyerinde, West African Science Service Centre on Climate Change and Adapted Land Use, University of Abomey-Calavi, Abomey, Calavi, Benin
Benjamin Kouassi Yao, National Polytechnic Institute, Yamoussoukro, Côte d'Ivoire
Abel Akambi Afouda, West African Science Service Centre on Climate Change and Adapted Land Use, University of Abomey-Calavi, Abomey, Calavi, Benin
Article Tools
Follow on us
Abstract
Precipitation projections from regional climate models in West Africa are attributed with significant biases with respect to the observed. This study aims at evaluating of six methods of precipitation bias correction on four RCM (CCLM, CRCM, RACMO and REMO) outputs in the Ouémé basin. The bias correction methods used are classified into three namely: the Delta approach, the Linear Scaling method and the quantile approaches. Corrected and uncorrected RCM precipitation data were compared with the observed using Mean Absolute Error (MAE) and Root Mean Square error (RMSE). The findings showed that raw outputs of regional climate models (RCMs) are characterized with several biases. In general, the models overestimate precipitation. For daily precipitation correction, the quantile approaches assuming a gamma distribution for daily precipitation were not able to reduce the biases of precipitation. The empirical quantile mapping and the adjusted quantile mapping are the most effective in correcting the biases of daily precipitation. Thus the adjusted quantile mapping can be used to correct biases of precipitation projections for modeling the future availability of water resources.
Keywords
Delta, Linear Scaling, Precipitation, Bias Correction Method, Ouémé, Benin
To cite this article
Yèkambèssoun N’Tcha M’Po, Agnidé Emmanuel Lawin, Ganiyu Titilope Oyerinde, Benjamin Kouassi Yao, Abel Akambi Afouda, Comparison of Daily Precipitation Bias Correction Methods Based on Four Regional Climate Model Outputs in Ouémé Basin, Benin, Hydrology. Vol. 4, No. 6, 2016, pp. 58-71. doi: 10.11648/j.hyd.20160406.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Ibrahim, B., Caractérisation des saisons de pluies au Burkina Faso dans un contexte de changement climatique et évaluation des impacts hydrologiques sur le bassin du Nakanbé.. Thèse de doctorat, 2IE, 2012.
[2]
Hagemann, S., Chen, C., Clark, D., Folwell, S., Gosling, S., Haddeland, I., Hanasaki, N., Heinke, J., Ludwig, F., Voss, F. & Wiltshire, A. J. 2013. Climate change impact on available water resources obtained using multiple global climate and hydrology models.. Earth Syst. Dyn., 4:, 129–144.
[3]
Mbaye, M. L., Haensler, A., Hagemann, S., Gaye, A. T., Moseley, C. and Afouda, A., Impact of statistical bias correction on the projected climate change signals of the regional climate model REMO over the Senegal River Basin.Int.J. Climatol., 2015.
[4]
Lawin, A. E., Analyse climatologique et statistique du régime pluviométrique de la haute vallée de l'Ouémé à partir des données pluvigraphiques AMMA-CATCH Bénin. Thèse de doctorat, Institut Polytechnique de Grenoble., 2007.
[5]
Piani, C., J. O. Haerter, and E. Coppola, Statistical bias correction for daily precipitation in regional climate models over Europe.. Theor. Appl. Climatol.,, 2010. 99: p. 187–192.
[6]
Hagemann, S., et al., Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models.. J. Hydrometeorol., 2011. 12: p. 556–578.
[7]
Gutjahr, O. and G. Heinemann Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM. Effects on extreme values and climate change signal. Theor Appl Climatol 2013. 114: p. 511–529.
[8]
Kaboré, E., Nikiema, M., Ibrahim, B. and Helmschrot, J., Merging historical data records with MPI-ESM-LR, CanESM2, AFR MPI and AFR 44 scenarios to assess long-term climate trends for the Massili Basin in central Burkina Faso. International Journal of Current Engineering and Technology 2015.
[9]
Fowler, H. J. and M. Ekstrom, Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int. J. Climatol., 2009. 29: p. 385–416.
[10]
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themessl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M. and I., Thiele-Eich., Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 2010. 48, RG3003.
[11]
Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G. and P. L., Vidale, Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. Journal of Geophysical Research 2003. 108 (D3): 4124.
[12]
Fowler, H. J., S. Blenkinsop, and C. Tebaldi Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling.. Int. J. Climatol., 2007. 27: p. 1547–1578.
[13]
Themeßl, M. J., A. Gobiet, and G. Heinrich, Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal.. Climatic Change 2011.
[14]
Déqué, M., Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values.. Global and Planetary Change 2007. 57 p. 16–26.
[15]
Graham, L. P., J. Andréasson, and B. Carlsson An ensemble of regional climate models, model scales and linking methods - a case study on the lule river basin.. Climatic Change, 2005.
[16]
Wetterhall, F., Conditioning model output statistics of regional climate model precipitation on circulation patterns. No2012. Nonlin. Processes Geophys., 2012. 19: p. 623–633.
[17]
Sarr, M.., Seidou, O., Tramblay, Y. and EL Adlouni, S, Comparison of downscaling methods for mean and extreme precipitation in Senegal.. Journal of Hydrology: Regional Studies 4 (2015) 2015: p. 369–385.
[18]
Fang, G.., Yang, J., Chen, Y. N. and Zammit, C, Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China.. Published in Hydrol. Earth Syst. Sci., 2015: p. 2547–2559.
[19]
Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hageman, S. & Haerter, J. O., Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models.. Journal of Hydrology 2010. 395 (2010) p. 199–215.
[20]
Wilcke, R., T. Mendlik, and A. Gobiet, Multi-variable error correction of regional climate Models. Climatic Change 2013(120): p. 871–887.
[21]
Teutschbein, C. and J. Seibert, Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods Journal of Hydrology, 2012. 456: p. 12-29.
[22]
Lawin, E. A., Afouda, A., Oguntundé, P. G., Lebel, T. and Gosset, M., Rainfall Variability at Regional and Local Scales in the Ouémé Upper Valley in Bénin. International Journal of Science and Advanced Technology., 2012. 2 (6): p. 46–55.
[23]
Zannou, A. B. Y., Analyse et Modélisation du Cycle Hydrologique Continental pour la Gestion Intégrée des Ressources en Eau au Bénin: Cas du Bassin de l’Ouémé à Bétérou, in Chaire Internationale en Physique Mathématique et Applications (CIPMA - Chaire UNESCO). 2011, University of Abomey-Calavi, p. 356.
[24]
Giorgi, F., C. Jones, and G. Asrar, Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol.. Org. Bull., 2009. 58: p. 175–183.
[25]
Haensler, A., S. Hagemann, and D. Jacob, The role of simulation setup in a long-term high resolution climate change projection for southern African region. Theor. Appl. Climatol., 2011. 106: p. 153–169.
[26]
Haensler, A., F. Saeed, and D. Jacob, Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Clim. Change 2013. 121: p. 349–363.
[27]
Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Cerezo-Mota, M., Christensen, O. B., Déqué, M., Fernandez, J., Hänsler, A., Meijgaard, E. V., Patrick Samuelsson, P., Sylla, M. B. and Sushama, L., Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Clim., 2012. 25: p. 6057–6078.
[28]
Mbaye, M. L., Hagemann, S., Haensler, A., Gaye, A. T. & Afouda, A., Assessment of Climate Change Impact on Water Resources in the Upper Senegal Basin(West Africa) American Journal of Climate Change 2015(77-93).
[29]
Giertz, S., B. Höllermann, and B. Diekkrüger, An interdisciplinary scenario analysis to assess the water availability and water consumption in the Upper Ouémé catchment in Benin. Adv. Geosci., 2006. 9: p. 3–13.
[30]
Lettenmaier, D. P. and T. Y. Gan Hydrologic sensitivities of the Sacramento-San Joaquin River Basin, California, to global warming.. Water Resources Research, 1990. 26: p. 69-86.
[31]
Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk, J. C., Lang, H., Parmet, B. W., Schädler, B., Schulla, J. and K., Wilke, Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Climatic change, 2001. 49: p. 105-128.
[32]
Lenderink, G., A. Buishand, and W. Van Deursen Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 2007. 11: p. 1145-1159.
[33]
Yang, W., Andréasson, J., Graham, L. P., Olsson, J., Rosberg, J. & Wetterhall, F, Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies.. Hydrology Research 2010.
[34]
Rajczak, J., Kotlarski, S., Salzmann, N. & Schär, C, Robust climate scenarios for sites with sparse observations: a two-step bias correction approach. Int. J. Climatol., 2016. 36: p. 1226–1243.
[35]
Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B., The changing character of precipitation.. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205, 2003. 84 p. 1205–1217.
[36]
Reichle, R. H. and R. D. Koster, Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 2004. 31, L19501.
[37]
Boé, J., Terray, L., Habets, F. and Martin, E., Statistical and dynamical downscaling of the seine basin climate for hydro-meteorological studies. Int J Climatol 2007. 27 (12): p. 1643–1655.
[38]
Amengual, A., Homar, V., Romero, R., Alonso, S. & Ramis, C. Statistical Adjustment of Regional Climate Model Outputs to Local Scales: Application to Platja de Palma, Spain. Journal of Climate, 2012.
[39]
Vlček, O. and H. Radan, Is daily precipitation Gamma-distributed? Adverse effects of an incorrect use of the Kolmogorov–Smirnov test. Atmospheric Research, 2009. 93 p. 759–766.
[40]
Willmott, C. and K. Matsuura, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance.. Clim. Res., 2005. 30: p. 79–82.
[41]
Chai, T. and R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)?– arguments against avoiding RMSE in the literature.. Manuscript prepared for Geosci. Model Dev. Discuss., 2014.
[42]
Bachner, S., A. Kapala, and C. Simmer, Evaluation of daily precipitation characteristics in the CLM and their sensitivity to parameterizations.. Meteorol Z 2008. 17 (4): p. 407–419.
[43]
IPCC, Summary for Policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2014.
[44]
Dosio, A. and H.-J. Panitz, Climate change projections for CORDEX Africa with COSMO‑CLM regional climate model and differences with the driving global climate models. Clim Dyn, 2016. 46: p. 1599–1625.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186