| Peer-Reviewed

Systematic Division of Coalbed Methane-Enriched Units

Received: 23 January 2017    Accepted: 7 February 2017    Published: 2 March 2017
Views:       Downloads:
Abstract

Division of coalbed methane (CBM)-enriched units primarily depends on the analysis of the main controlling factors of CBM occurrence. The main controlling factors analyzed in this article are sedimentary sequences related to the forming and alteration of CBM, tectonic movement, and burial and hydrocarbon-generation histories. The parameters were measured for independent quantities such as CBM content, gradient, coefficient of extraction difficulty and geological structure complexity. Correlation analysis was conducted between the measured parameters of CBM-bearing systems and the main controlling factors. When the controlling factors are sedimentary sequences and the sedimentary systems tract, the division of CBM-enriched units is based on the coal-forming environment, coal mass distribution and coal characteristics. When the controlling factor is the tectonic matching between the orefield, mining area and mining wells, the division of CBM-enriched units is based on tectonic movement. When burial and hydrocarbon-generation histories are the controlling factors, the division of CBM-enriched units is based on metamorphic traits.

Published in International Journal of Oil, Gas and Coal Engineering (Volume 5, Issue 1)
DOI 10.11648/j.ogce.20170501.12
Page(s) 5-12
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Coalbed Methane, Geological Unit Division, Sedimentary Sequence, Tectonic Movement, Coal Grade

References
[1] Zhang QH, Li MJ, Wang QX et al. Gas Geology Methods Based on Large Data Thinking [J]. Coal Technology, 2015, 34(2): 75-77.
[2] Wang QX. Analysis and application of coal and gas outburst master control geologic body [J]. Safety in Coal Mines, 2015(46): 156-159.
[3] Wang QX. Analysis of typical main gas controlling structure [J]. Safety in Coal Mines, 2015, 46(11): 168-170.
[4] Wang QX. Gas control features of arcuate tectonic belts [J]. Journal of Henan Polytechnic University, 2015, 34(04): 451-454.
[5] QIN Y, Xiong M, Yi TS et al. On Unattached Multiple Superposed Coalbed Methane System: in a Case of the Shuigonghe Syncline, Zhijin— Nayong Coalfield, Guizhou [J]. Geological Review, 2008, 54(1): 65-70.
[6] Zheng ZY, Qin, XH Fu, ZB et al. Multi-Layer Superposed Coalbed Methane System in Southern Qinshui Basin, Shanxi Province, China[J]. Journal of Earth Science. 2015(03).
[7] Shen J, Fu XH, Qin Y et al. Quantitative characterization of intensity of tectonic movement and its control on the coal and gas outburst in Panyi Coal Mine [J]. Safety in Coal Mines, 2010, 93-95.
[8] Dong GW, Zhang QH, Wang QX. Effect of sequence stratigraphy of the coal-bearing strata on goal and gas outburst in Shuicheng Mining Area [J]. Mining Safety and Environmental Protection, 2012(39): 17-19.
[9] Zhao MJ, Zhang SC, Zhao L et al. The thermal evolution history and oil and gas generation history of main source rocks in the Nanpanjiang Basin [J]. Petroleum Geology and Experiment, 2006(03): 117-119.
[10] Song Y, Liu HL, Liu SB et al. Coalbed Methane Reservoir-Forming Geology [M]. Beijing: Science Press, 2010.
[11] Wang HM, Zhu YM, Li W et al. Two major geological control factors of occurrence characteristics of CBM [J]. Journal of China Coal Society, 2011, 36(7): 1128-1134.
[12] Qin Y, Shen J, Wang BW et al. Accumulation effects and coupling relationship of deep coalbed methane [J]. Acta petrolei sinica, 2012(33): 48-54.
[13] ZHAO LJ, QIN Y, SHEN J. Adsorption Behavior and Abundance Predication Model of Deep Coalbed Methane[J]. Geological Journal of China Universities, 2012(18): 553-557.
[14] QIN Y, SONG QY, FU XH. Discussion on reliability for co-mining the coalbed gas and normal petroleum and natural gas: absorptive effect of deep coal reservoir under condition of balanced water [J]. Natural gas geoscience, 2005(16): 492-498.
[15] Wang QX, Han WJ, Gao Y et al. Thinking and key technology of information mapping for coal-bed gas geology[J].Mining Safety and Environmental Protection, 2015,42(6): 93-95.
[16] Wang QX, Dong GW, Cui JF et al. Analysis of gas geology of #II88 mining area in Luling Coal Mine [J]. Journal of Chengdu University of Technology, 2012, 39(01): 27-31.
Cite This Article
  • APA Style

    Zhang Qinghua, Zhao Xusheng, Wang Qixiang. (2017). Systematic Division of Coalbed Methane-Enriched Units. International Journal of Oil, Gas and Coal Engineering, 5(1), 5-12. https://doi.org/10.11648/j.ogce.20170501.12

    Copy | Download

    ACS Style

    Zhang Qinghua; Zhao Xusheng; Wang Qixiang. Systematic Division of Coalbed Methane-Enriched Units. Int. J. Oil Gas Coal Eng. 2017, 5(1), 5-12. doi: 10.11648/j.ogce.20170501.12

    Copy | Download

    AMA Style

    Zhang Qinghua, Zhao Xusheng, Wang Qixiang. Systematic Division of Coalbed Methane-Enriched Units. Int J Oil Gas Coal Eng. 2017;5(1):5-12. doi: 10.11648/j.ogce.20170501.12

    Copy | Download

  • @article{10.11648/j.ogce.20170501.12,
      author = {Zhang Qinghua and Zhao Xusheng and Wang Qixiang},
      title = {Systematic Division of Coalbed Methane-Enriched Units},
      journal = {International Journal of Oil, Gas and Coal Engineering},
      volume = {5},
      number = {1},
      pages = {5-12},
      doi = {10.11648/j.ogce.20170501.12},
      url = {https://doi.org/10.11648/j.ogce.20170501.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ogce.20170501.12},
      abstract = {Division of coalbed methane (CBM)-enriched units primarily depends on the analysis of the main controlling factors of CBM occurrence. The main controlling factors analyzed in this article are sedimentary sequences related to the forming and alteration of CBM, tectonic movement, and burial and hydrocarbon-generation histories. The parameters were measured for independent quantities such as CBM content, gradient, coefficient of extraction difficulty and geological structure complexity. Correlation analysis was conducted between the measured parameters of CBM-bearing systems and the main controlling factors. When the controlling factors are sedimentary sequences and the sedimentary systems tract, the division of CBM-enriched units is based on the coal-forming environment, coal mass distribution and coal characteristics. When the controlling factor is the tectonic matching between the orefield, mining area and mining wells, the division of CBM-enriched units is based on tectonic movement. When burial and hydrocarbon-generation histories are the controlling factors, the division of CBM-enriched units is based on metamorphic traits.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Systematic Division of Coalbed Methane-Enriched Units
    AU  - Zhang Qinghua
    AU  - Zhao Xusheng
    AU  - Wang Qixiang
    Y1  - 2017/03/02
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ogce.20170501.12
    DO  - 10.11648/j.ogce.20170501.12
    T2  - International Journal of Oil, Gas and Coal Engineering
    JF  - International Journal of Oil, Gas and Coal Engineering
    JO  - International Journal of Oil, Gas and Coal Engineering
    SP  - 5
    EP  - 12
    PB  - Science Publishing Group
    SN  - 2376-7677
    UR  - https://doi.org/10.11648/j.ogce.20170501.12
    AB  - Division of coalbed methane (CBM)-enriched units primarily depends on the analysis of the main controlling factors of CBM occurrence. The main controlling factors analyzed in this article are sedimentary sequences related to the forming and alteration of CBM, tectonic movement, and burial and hydrocarbon-generation histories. The parameters were measured for independent quantities such as CBM content, gradient, coefficient of extraction difficulty and geological structure complexity. Correlation analysis was conducted between the measured parameters of CBM-bearing systems and the main controlling factors. When the controlling factors are sedimentary sequences and the sedimentary systems tract, the division of CBM-enriched units is based on the coal-forming environment, coal mass distribution and coal characteristics. When the controlling factor is the tectonic matching between the orefield, mining area and mining wells, the division of CBM-enriched units is based on tectonic movement. When burial and hydrocarbon-generation histories are the controlling factors, the division of CBM-enriched units is based on metamorphic traits.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao, China; State Key Laboratory of Gas Disaster Monitoring and Emergency Technologies, Chongqing, China; China Coal Technology Engineering Group Chongqing Research Institute, Chongqing, China

  • State Key Laboratory of Gas Disaster Monitoring and Emergency Technologies, Chongqing, China; China Coal Technology Engineering Group Chongqing Research Institute, Chongqing, China

  • State Key Laboratory of Gas Disaster Monitoring and Emergency Technologies, Chongqing, China; China Coal Technology Engineering Group Chongqing Research Institute, Chongqing, China

  • Sections