Engineering Mathematics
Volume 3, Issue 2, December 2019, Pages: 30-39
Received: Jun. 14, 2019;
Accepted: Oct. 11, 2019;
Published: Oct. 25, 2019
Views 816 Downloads 192
Author
Zhihui Li, Department of Mathematics, School of Mathematics and Statistics, Shandong University of Technology, Zibo, China
Zhihui Li,
Z2 (Z2+uZ2)(Z2+uZ2+u2Z2)-Additive Cyclic Codes, Engineering Mathematics.
Vol. 3, No. 2,
2019, pp. 30-39.
doi: 10.11648/j.engmath.20190302.11
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (
http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
[1]
Hammons A. R., Kumar P. V., Calderbank A. R., Sloane N. J. A., Sol P., The Z4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Transactions on Information Theory. 40 (2), 301-319, 1994.
[2]
Dougherty S. T., Fernndez-Crdoba C., Codes over Z2k, Gray Map Self-Dual Codes Adv. Math. Commun. 5 (4), 571-588, 2011.
[3]
Greferath M., Schmidt S. E., Gray isometries for finite chain rings and a nonlinear ternary (36, 3/sup 12/, 15) code, IEEE Transactions on Information Theory. 45 (7), 2522–2524, 1999.
[4]
Honold T., Landjev I., Linear Codes over Finite Chain Rings, JOURNAL OF COMBINATORICS. 7 (1), R11–R11, 2001.
[5]
Delsarte P., Levenshtein V. I., Association schemes and coding theory, IEEE Transactions on Information Theory. 44 (6), 2477–2504, 1998.
[6]
Borges J., Fernndez-Crdoba C., Pujol J., Rif J., Villanueva M., Z2Z4-Linear codes: generator matrices and duality. Designs, Codes Cryptogr. 54 (2), 167–179, 2010.
[7]
Abualrub T., Siap I. and Aydin N., Z2Z4-Additive cyclic codes, IEEE Transactions on Information Theory. 60 (3), 1508–1514, 2014.
[8]
Aydogudu I., Abualrub T. and Siap I., On Z2Z2 [u] -additive codes, Int. J. Comput. Math. 92 (9), 1806C-1814, 2015.
[9]
Borges J., Fernndez-Crdoba C., Ten-Valls R., Z2Z4-Additive cyclic codes, generator polynomials and dual codes, IEEE Transactions on Information Theory. 62 (11), 6348–6354, 2016.
[10]
Aydogdu I., Gursoy F., Z2Z4Z8-Cyclic codes, Journal of Applied Mathematics andm Computing. 60 (1–2), 327–341, 2019.
[11]
Joaquim B., Dougherty S. T., Cristina F. C., et. al., Binary Images of Z2Z4-Additive cyclic codes, IEEE Transactions on Information Theory. 64 (12), 7551–7556, 2018.
[12]
Ismail A., Taher A., The structure of Z2Z4s-additive cyclic codes, Discrete Mathematics, Algorithms and Applications. 10 (04), 1850048, 2018.
[13]
Wan Z. X., Quaternary codes, World Scientific. 8, 1997.
[14]
Abualrub T. and Siap I., Cyclic codes over the rings Z2+uZ2 and Z2+uZ2+u2Z2 , Designs Codes and Cryptography. 42 (3), 273–287, 2007.
[15]
Macwilliams F. J., Sloane N. J. A., The theory of error-correcting codes, Elsevier. 16, 1977.