| Peer-Reviewed

Optical Luminosity Function of Quasi Stellar Objects

Received: 29 October 2016    Accepted: 11 November 2016    Published: 8 December 2016
Views:       Downloads:
Abstract

We study the shape of the optical luminosity function of Quasi Stellar Objects (QSOs) from the Sloan Digital Sky Survey Data Release Seven (SDSS DR7) over the redshift range 0.3 ≤ Z ≤ 2.4. By using the Levenberg-Marquardt method of nonlinear least square fit, the observed QSO luminosity function is fitted by a double power-law model with luminosity evolution characterized by a second order polynomial in redshift. For a flat universe with Ωm=0.3 and Ω Λ=0.7, we determine the best-fitting optical luminosity function model parameters.

Published in American Journal of Astronomy and Astrophysics (Volume 4, Issue 6)
DOI 10.11648/j.ajaa.20160406.12
Page(s) 78-82
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Quasars: General, Quasars: Supermassive Black Holes, Galaxies: Luminosity Function

References
[1] N. P. Ross, et al., “The SDSS-III Baryon Oscillation Spectroscopic Survey: The quasar luminosity function from data release nine,” Astrophys. J., vol. 773, pp. 14, 2013.
[2] M. Schmidt, “Space distribution and luminosity functions of quasi-stellar radio sources,” Astrophys. J., vol. 151, pp. 393, 1968.
[3] J. D. Kennefick, S. G. Djorgovski, R. R. De Carvalho, “The luminosity function of z > 4 quasars from the second palomar sky survey,” Astron. J., vol. 110, pp. 2553, 1995.
[4] A. K. Kembhavi, J. V. Narlikar, “Quasars and Active Galactic Nuclei,” Cambridge: Cambridge University Press, 1999.
[5] S. L. Shapiro, “The Density of Matter in the Form of Galaxies,” Astron. J. vol. 76. pp. 291, 1971.
[6] Q. Yu, S. Tremaine, “Observational constraints on growth of massive blackholes,” Mon. Not. R. Astron. Soc., vol. 335, pp. 965-976, 2002.
[7] M. G. Haehnelt, M. J. Rees, “The formation of nuclei in newly formed galaxies and the evolution of the quasar population,” Mon. Not. R. Astron. Soc., vol. 263, pp. 167-178, 1993.
[8] R. J. Terlevich, B. J. Boyle, “Young ellipticals at high redshift,” Mon. Not. R. Astron. Soc., vol. 262, pp. 491-498, 1993.
[9] B. J. Boyle, et al., “The 2dF QSO Redshift Survey-I. The optical luminosity function of quasi-stellar objects,” Mon. Not. R. Astron. Soc., vol. 317, pp. 1014-1022, 2000.
[10] S. M. Croom, et al., “The 2dF-SDSS LRG and QSO survey: the QSO luminosity function at 0.4 < z < 2.6,” Mon. Not. R. Astron. Soc., vol. 399, pp. 1755-1772, 2009.
[11] D. C. Koo, and R. G. Kron, “Spectroscopic survey of QSOs to B=22.5: The luminosity function,” Astrophys J., vol.325, pp. 92-102, 1988.
[12] B. J. Boyle, and R. J. Terlevich, “The cosmological evolution of the QSO luminosity density and of the star formation rate,” Mon. Not. R. Astron. Soc., vol. 293, pp. L49-L51, 1998.
[13] R. F. Mushotzky, et al., “Resolving the extragalactic hard X-ray background,”Nature, vol. 404, pp. 459, 2000.
[14] M. A. Worsley, et al., “The unresolved hard X-ray background: the missing source population implied by the Chandra and XMM-Newton deep fields,” Mon. Not. R. Astron. Soc., vol. 357, pp. 1281-1287, 2005.
[15] L. Jiang, et al., “A spectroscopic survey of faint quasars in the SDSS DEEP STRIP. I. Preliminary results from the co-added catalog,” Astron. J., vol. 131, pp. 2788-2800, 2006.
[16] X. Fan, et al., “High-redshift quasars found in Sloan Digital Sky Survey commissioning data. IV. Luminosity function from the equatorial stripe sample,” Astron. J.,vol. 121, pp. 54-65, 2001.
[17] G. T. Richards, M. A. Strauss, X. Fan, et al. “The Sloan Digital Sky Survey Quasar Survey: Quasar luminosity function from data release 3,” Astron. J., vol. 131, pp. 2766-2787, 2006.
[18] J. E. Greene, and L. C. Ho, “The Mass Function of Active Black Holes in Local Universe,” Astrophy. J., vol. 667, pp. 131-148, 2007.
[19] M. Vestergaard, and P. S. Osmer, “Mass functions of the active black holes in distant quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the Color-Selected sample of the SDSS Fall Equatorial Stripe,” Astrophys. J., vol. 699, pp. 800-816, 2009.
[20] A. Schulze, and L. Wisotzki, “Low redshift AGN in the Hamburg/ESO Survey II. The active black hole mass function and the distribution function of Eddington ratios,” Astron. Astrophy., vol. 516, pp. A87, 2010.
[21] B. J. Boyle, T. Shanks, and B. A. Petersion, “The evolution of optically selected QSOs-II,” Mon. Not. R. Astron. Soc., vol. 235, pp. 935-948, 1988.
[22] S. M. Croom, et al., “The 2dF QSO Redshift Survey XII. The spectroscopic catalogue and luminosity function,” Mon. Not. R. Astron. Soc., vol. 349, pp. 1397-1418, 2004.
[23] G. T. Richards, et al., “The 2dF-SDSS LRG and QSO (2SLAQ) Survey: the z<2.1 quasar luminosity function from 5645 quasars to g=21.85,” Mon. Not. R. Astron. Soc., vol. 360, pp. 839-852, 2005.
[24] E. Glikman, et al., “The faint end of the quasar luminosity function at z~4: Implications for ionization of the intergalactic medium and cosmic downsizing,” Astrophy. J. Lett., vol. 728, pp. L26, 2011.
[25] P. Schechter, “An analytic expression for the luminosity function for galaxies, Astrophy. J., vol. 203, pp. 297-306, 1976.
[26] P. Goldschmidt, and L. Miller, “The UVX quasar optical luminosity function and its evolution, Mon. Not. R. Astron. Soc., vol. 293, pp. 107-112, 1998.
[27] S. J. Warren, P. C. Hewett, and P. S. Osmer, “A Wide-Field Multicolor Survey for high-redshift quasars z ≥ 2.2. III. The luminosity function,” Astrophy. J., vol. 421. pp. 412-433, 2010.
[28] S. A. Singh, and K. Y. Singh, “The QSOs Luminosity Function from the 2dF QSO Redshift Survey and the Associated 6dF QSO Redshift Survey at 0.3≤z≤2.4,” Advances in Astrophysics, vol. 1, pp. 106-112, 2016.
[29] S. A. Singh, I. A. Meitei, and K. Y. Singh, “Schechter Function Model for the QSO Luminosity Function from the SDSS DR7,” International Journal of Astronomy and Astrophysics, vol. 6, pp. 247-253, 2016.
[30] A. Bongiorno, et al., “The VVDS type-1 AGN sample: the faint end of the luminosity function,” Astron. Astrophy., vol. 472, pp. 443-454, 2007.
[31] D. G. York, et al., “The Sloan Digital Sky Survey: Technical summary,” Astron. J., vol. 120, pp. 1579-1587, 2000.
[32] J. E. Gunn, et al., The 2.5 m telescope of the Sloan digital Sky Survey,” Astron. J., vol. 182, pp. 2332-2359, 2006.
[33] J. E. Gunn, et al., “The Sloan Digital Sky Survey photometric camera,” Astron. J., vol. 116, pp. 3040-3081, 1998.
[34] M. Fukugita, et al., “The Sloan Digital Sky Survey photometric system,” Astron. J., vol. 111, pp. 1748, 1996.
[35] D. W. Hogg, et al., “A photometricity and extinction monitor at the Apache Point Observatory,” Astron. J., vol. 122, pp. 2129-2138, 2001.
[36] Ž. Ivezić, et al., “SDSS data management and photometric quality assessment,” Astron. Nachr., vol. 325, pp. 583-589, 2004.
[37] J. R. Pier, et al., “Astrometric calibration of the Sloan Digital Sky Survey,” Astron. J., vol. 125, pp. 1559-1579, 2003.
[38] J. A. Smith, et al., “The u′g′r′i′z′ 350 standard star system,” Astron. J., vol. 123, pp. 2121-2144, 2002.
[39] J. B. Oke, and J. E. Gunn, et al., “Secondary standard stars for absolute spectrophotometry,” Astrophy. J., vol. 266, pp. 713-717, 1983.
[40] R. H. Lupton, J. E. Gunn, and A. S. Szalay, “A modified magnitude system that produces well-behaved magnitudes, colors, and errors even for signal-to noise ratio measurements,” Astron. J., vol. 118, pp. 1406-1410, 1999.
[41] D. P. Schneider, G. T. Richards, P. B. Hall, et al., “The Sloan Digital Sky Survey quasar catalog. V. Seven data release,” Astron. J., vol. 139, pp. 2360-2373, 2010.
[42] S. A. Singh, I. A. Singh, and K. Y. Singh, “Optical Luminosity Function of the QSOs Observed with the Sloan Digital Sky Survey Data Release Seven (SDSS DR7),” International Journal of Astronomy and Astrophysics, vol. 4, pp. 474-478, 2014.
[43] G. T. Richards, X. Fan, H. J. Newberg, et al., “Spectroscopic Target Selection in the Sloan Digital Sky Survey: The quasar sample,” Astron. J., vol. 123, pp. 2945-2975, 2002.
[44] Y. Shen, and B. C. Kelly, et al., “The demographics of broad-line quasars in the mass-luminosity plane. I. Testing FWHM-BASED virial black hole masses,” Astrophy. J., vol. 746, pp. 169, 2012.
[45] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical Recipes in Fortran 77,” Cambridge: Cambridge University Press, 1992.
Cite This Article
  • APA Style

    Salam Ajitkumar Singh, Irom Ablu Meitei, Kangujam Yugindro Singh. (2016). Optical Luminosity Function of Quasi Stellar Objects. American Journal of Astronomy and Astrophysics, 4(6), 78-82. https://doi.org/10.11648/j.ajaa.20160406.12

    Copy | Download

    ACS Style

    Salam Ajitkumar Singh; Irom Ablu Meitei; Kangujam Yugindro Singh. Optical Luminosity Function of Quasi Stellar Objects. Am. J. Astron. Astrophys. 2016, 4(6), 78-82. doi: 10.11648/j.ajaa.20160406.12

    Copy | Download

    AMA Style

    Salam Ajitkumar Singh, Irom Ablu Meitei, Kangujam Yugindro Singh. Optical Luminosity Function of Quasi Stellar Objects. Am J Astron Astrophys. 2016;4(6):78-82. doi: 10.11648/j.ajaa.20160406.12

    Copy | Download

  • @article{10.11648/j.ajaa.20160406.12,
      author = {Salam Ajitkumar Singh and Irom Ablu Meitei and Kangujam Yugindro Singh},
      title = {Optical Luminosity Function of Quasi Stellar Objects},
      journal = {American Journal of Astronomy and Astrophysics},
      volume = {4},
      number = {6},
      pages = {78-82},
      doi = {10.11648/j.ajaa.20160406.12},
      url = {https://doi.org/10.11648/j.ajaa.20160406.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaa.20160406.12},
      abstract = {We study the shape of the optical luminosity function of Quasi Stellar Objects (QSOs) from the Sloan Digital Sky Survey Data Release Seven (SDSS DR7) over the redshift range 0.3 ≤ Z ≤ 2.4. By using the Levenberg-Marquardt method of nonlinear least square fit, the observed QSO luminosity function is fitted by a double power-law model with luminosity evolution characterized by a second order polynomial in redshift. For a flat universe with Ωm=0.3 and Ω Λ=0.7, we determine the best-fitting optical luminosity function model parameters.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Optical Luminosity Function of Quasi Stellar Objects
    AU  - Salam Ajitkumar Singh
    AU  - Irom Ablu Meitei
    AU  - Kangujam Yugindro Singh
    Y1  - 2016/12/08
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajaa.20160406.12
    DO  - 10.11648/j.ajaa.20160406.12
    T2  - American Journal of Astronomy and Astrophysics
    JF  - American Journal of Astronomy and Astrophysics
    JO  - American Journal of Astronomy and Astrophysics
    SP  - 78
    EP  - 82
    PB  - Science Publishing Group
    SN  - 2376-4686
    UR  - https://doi.org/10.11648/j.ajaa.20160406.12
    AB  - We study the shape of the optical luminosity function of Quasi Stellar Objects (QSOs) from the Sloan Digital Sky Survey Data Release Seven (SDSS DR7) over the redshift range 0.3 ≤ Z ≤ 2.4. By using the Levenberg-Marquardt method of nonlinear least square fit, the observed QSO luminosity function is fitted by a double power-law model with luminosity evolution characterized by a second order polynomial in redshift. For a flat universe with Ωm=0.3 and Ω Λ=0.7, we determine the best-fitting optical luminosity function model parameters.
    VL  - 4
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Manipur University, Imphal, India

  • Department of Physics, Modern College, Imphal, India

  • Department of Physics, Manipur University, Imphal, India

  • Sections