From the Heterotic String Quartet to the Cosmic Dark Matter, Dark Energy and Ordinary Energy Symphony
American Journal of Astronomy and Astrophysics
Volume 5, Issue 2, March 2017, Pages: 21-24
Received: Mar. 6, 2017; Accepted: Mar. 24, 2017; Published: Apr. 10, 2017
Views 291      Downloads 32
Mohamed S. El Naschie, Dept. of Physics, Faculty of Science, University of Alexandria, Alexandria, Egypt
Article Tools
Follow on us
The main novel part of the paper is to identify the 16 extra bosonic dimensions of the Heterotic string theory with the negative signature of K3 Kähler manifold and these in turn are the source of pure dark energy.Guided by the basic ideas and structure of heterotic string theory we establish an energy density triality, which add together to the theoretically expected energy density based on Einstein’s relativity. Thus Einstein’s famous formula E = mc 2 is found in integer approximation to be the sum of three sectors, namely where is the ordinary energy density, is the dark matter energy density and is the pure dark energy density where m is the mass, c is the velocity of light and 16 is the number of heterotic strings extra bosons. We demonstrate further that strictly speaking dark matter is weakly coupled with pure dark energy and that while dark matter and ordinary energy are attracting in the conventional way, pure dark energy has an opposite sign similar to the extra 16 dimensions of heterotic strings making it act effectively in the opposite direction in conformity with the negative sign and magnitude of the corresponding K3 Kähler manifold.
Heterotic Strings, David Gross 16 Extra Dimensions, Pure Dark Energy, Dark Matter, Kaluza-Klein Theories, Fractal Spacetime, E-infinity Theory
To cite this article
Mohamed S. El Naschie, From the Heterotic String Quartet to the Cosmic Dark Matter, Dark Energy and Ordinary Energy Symphony, American Journal of Astronomy and Astrophysics. Vol. 5, No. 2, 2017, pp. 21-24. doi: 10.11648/j.ajaa.20170502.12
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
R. Engelking: Theory of Dimensions Finite and Infinite. Heldermann Verlag, Lemgo, Germany. 1995.
N. J. Wilenkin: Unterhaltsame Mengenlehre Verlag Havri Deutsch. Leipzig, Germany. 1973.
M. S. El Naschie: Infinite dimensional Branes and the E-infinity toplogy of heterotic superstrings. Chaos, Solitons & Fractals, 2001, 12, pp. 1047-1055.
L. Marek-Crnjac: Partially ordered sets, transfinite topology and the dimension of Cantorian-fractal spacetime. Chaos, Solitons & Fractals, 42 (3), 2009, pp. 1796-1799.
L. Marek-Crnjac, G. Iovane, S. I. Nada and Ting Zhang: The mathematical theory of finite and infinite dimensional topological spaces and its relevance to quantum gravity. Chaos, Solitons & Fractals, 42 (4), 2009, 1974-1979.
S. I. Nada: Density manifolds, geometric measures and high energy physics in transfinite dimensions. Chaos, Solitons & Fractals, 42 (3), 2009, pp. 1339-1541.
S. I. Nada: On the mathematical theory of transfinite dimensions and its application in physics. Chaos, Solitons & Fractals, 42 (1), 2009, pp. 530-531.
Guo-Cheng Wu and Ji-Huan He: On the Menger Urysohn theory of Cantorian manifolds and transfinite dimensions in physics. Chaos, Solitons & Fractals, 42 (2), 2009, pp. 781-783.
Sudhanva Joshi: Theory of quantum relativity. Journal of Quantum Information Science, 6 (4), 2016, pp. 249-262.
M. Kaku: Introduction to Superstrings and M-theory. Springer, New York (1999).
T. Ortin: Gravity and Strings. Cambridge University Press, Cambridge, UK. 2004.
L. Marek-Crnjac: Generalized quantum entanglement family in connection to black holes and nanotechnology. Chapter in “Quantum Gravity”, Edited by B. Mitchell. Nova Publishers, New York, USA. 2017.
F. D. Peat: Superstrings. Abacus, London, UK. 1992.
J. Polchinski: String Theory Vol. I and Vol. II: Cambridge University Press, Cambridge, 1999.
M. S. El Naschie: From symmetry to particles. Chaos, Solitons & Fractals, 32 (2), 2007, pp. 427-430.
M. S. El Naschie: Topics in the mathematical physics of E-infinity theory. Chaos, Solitons & Fractals, 30 (3), 2006, pp. 656-663.
David Gross, J. A. Harvey, E. Martinec and R. Rohm: Heterotic string theory (1). The free Heterotic string. Nuclear Physics B, 256, 1985, pp. 253-284.
David Gross, J. A. Harvey, E. Martinec and R. Rohm: Physical Review Letters, 54 (6), 1985, pp. 502.
M. S. El Naschie: A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons & Fractals, 19 (1), 2004, pp. 209-236.
Mohamed S. El Naschie: A resolution of cosmic dark energy via quantum entanglement relativity theory. Journal of Quantum Information Science, 2013, 3, pp. 23-26.
Mohamed S. El Naschie: On a new elementary particle from the disintegration of the symplectic 't Hooft-Veltman-Wilson fractal spacetime. World Journal of Nuclear Science and Technology, Vol, 4 (4), 2014, pp. 216-221.
Mohamed S. El Naschie: On a fractal version of Witten’s M-theory. Journal of Astronomy & Astrophysics, 6 (2), 2016, pp. 135-144.
A. J. Babchin and M. S. El Naschie: On the real Einstein beauty E = kmc2. World Journal of Condensed Matter Physics, 6 (1), 2016.
M. S. El Naschie: Kerr black hole geometry leading to dark matter and dark energy via E-infinity theory and the possibility of nano spacetime singularity reactor. Natural Science, 7 (4), 2015, pp. 210-225.
Mohamed S. El Naschie: The looped light of the triple-slit real experiment as a confirmation for the extra dimensions of quantum spacetime and the reality of dark energy. Optical and Photonic Journal, 7 (2), 2017, pp. 19-26.
Mohamed S. El Naschie: Looped light on dark energy. Journal of Quantum Information Science, 7 (1), 2017, pp. 1-5.
Mohamed S. El Naschie: Quantum disentanglement as the physics behind dark energy. Open Journal if Mircophysics, 7 (1), 2017, pp. 1-27.
M. S. El Naschie: Computing dark energy and ordinary energy of the cosmos as a double Eigenvalue problem. Journal of Modern Physics, 6 (4), 2015, pp. 348-395.
Science Publishing Group
NEW YORK, NY 10018
Tel: (001)347-688-8931