Recombination Coefficient of Heavy Elements Using Photoionization Modeling
American Journal of Astronomy and Astrophysics
Volume 5, Issue 4, July 2017, Pages: 42-49
Received: Jun. 10, 2017; Accepted: Jun. 23, 2017; Published: Sep. 28, 2017
Views 1009      Downloads 50
Author
Belay Sitotaw Goshu, Department of Physics, Dire-Dawa University, Dire-Dawa, Ethiopia; Department of Mathematics, Astronomy and Computing Science, Unisa, South Africa
Article Tools
Follow on us
Abstract
The main purpose of this work is to calculate the radiative, dielectronic and total recombination of non-hydrogenic elements. We applied the photoionization codes to investigate the recombination coefficients. We have calculated radiative and dielectronic recombination coefficients of some elements at different temperatures and ionization stages. The results are obtained at low temperatures between 5,000 and 20,000 K and it shows that the dielectronic coefficients are not negligible relative to radiative recombination by assuming the solar abundances of H, He, C, N, O, Ne and S. We determined the total recombination coefficients of each element and compared them with previous works. Our calculations the radiative dielectric and total recombination coefficients of oxygen, nitrogen, carbon, neon and sulphur ions at a given temperature agree with the previous works.
Keywords
Photoionization, Radiative, Dielectronic Recombination Coefficients
To cite this article
Belay Sitotaw Goshu, Recombination Coefficient of Heavy Elements Using Photoionization Modeling, American Journal of Astronomy and Astrophysics. Vol. 5, No. 4, 2017, pp. 42-49. doi: 10.11648/j.ajaa.20170504.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
P’equignot D., Petitjean P., &Boission C., 1991, A&A, 251, 680.
[2]
Burgess A., 1965, ApJ, 17, 198.
[3]
Tarter C. B., 1973, ApJ, 168, 313.
[4]
Tarter C. B., 1971, ApJ, 168, 313.
[5]
Aldrovandi S. M. V., and Pequigno D., 1973, A&A, 25, 137.
[6]
Aldrovandi S. M. V., and Pequigno D., 1973, Rev. Bras. Fis. 4, 491.
[7]
Gould R. J., 1978, ApJ, 219, 250.
[8]
Ferland G. J., 2011, Hazy a brief introduction to cloudy, University of Kentucky internal report.
[9]
Osterbrock D. E., 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, University of Science Book, California, Santa Crux.
[10]
Susmita ChakravortyAjit K. Kembhavi, Martin Elvis, Gary Ferland and N. R. Badnell, 2008, MNRAS, 384, 24.
[11]
Burgess A. and Seaton, M. J., 1960a, MNRAS, 120, 76.
[12]
Sultana N., 1999, ApJS, 120, 131.
[13]
Osterbrock D. E., 1974, Astrophysics of Gaseous Nebulae, San Francisco: Freeman.
[14]
Woods D. T., Shull J. M., & Sarazin C. L., 1981, ApJ, 399, 401.
[15]
Michael A. Dopita& Ralph S. Sutherland, 1999, Diffuse matter in the universe. The Australian National University, Can-berra.
[16]
Anil K. Pradhan and Sultana N. Nahar, 2011, Atomic Astrophysics and Spectroscopy, United Kingdom at the University Press, Cambridge.
[17]
Dopita M. A. and Sutherland R. S., 2001, Diffuse Matter in the Universe, Subtitle, Edition, Physics of Monograph.
[18]
Shull J. M. & Steenberg, M. V., 1982, ApJ, 48, 95-107.
[19]
Liu X., 2010, arxiv: 1001.3715v2 [astro.ph.GA]. The dark secrets of gaseous nebulae highlights from deep spectroscopy.
[20]
Jon C. Weisheit, ApJ, 1973, 185, 877.
[21]
Bates D. R. and Massey H. S. W., 1943. The negative ions of atomic and molecular oxygen. Philosophical Transactions and of the Royal Society of London, Series A, 239(806): 269-304.
[22]
Massey H. S. W. and Bates D. R., 1942. The properties of neutral and ionized atomic oxygen influence on the upper atmosphere. Reports in Physics, 9(1), 62-74.
[23]
Orban Z., Altun, A., Ka’llberg A., Simonsson, G., Andler A., Pa_al M., Blom P., La’fgren S., Trotsenko S., BAuhm & Schuch R., 2009 A & A 498, 909.
[24]
Burgess A., 1964. Dielectronic recombination and the temperature of the solar corona. ApJ, 139, 776
[25]
Sultana N. Nahar and Anil K. Pradhan, 2006, ApJS, 162, 417.
[26]
Fogel M., Bandell N. R., Glans P., Loch S. D., Madzunkov S., Abdel-NabySh. A., Pindzola M. S., & Schuch R., 2005, A&A, 442, 757
[27]
Altun Z., Yumak A., Bandell N. R., Loch S. D., Pindzola M. S., 2006, A&, 447, 1165.
[28]
Drake G. W. F., 1996, in Drake G. W., ed., Atomic, Molecular, and Optical Physics Handbook. American Institute of Physics, Woodbury, New York, p. 154.
[29]
Nussbaumer H. & Storey P. J., 1983, A&A, 126, 74.
[30]
Sultana N. Nahar& Anil K. Pradhan, 1995, ApJ, 447, 966
[31]
Jacobs V. L., Davis J., Kepple P. C., and Blaha M., 1977b, Apj, 215, 690.
[32]
Goharji A. A., 1988, Durham Thesis, Durham University
[33]
Bandell N. R., 2005, A&A, 447, 389.
[34]
Williams R. E., Jenkins E. B., Baldwin J. A., Zhang Y., Sharpee B., Lellegrini E., and Philips M., 2008, ApJ, 677, 1100-1119.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931