| Peer-Reviewed

Coronal Mass Ejections, Solar Cycles and Magnetic Poles Reversal

Received: 19 June 2019    Accepted: 12 July 2019    Published: 26 July 2019
Views:       Downloads:
Abstract

The magnitude of the measured geomagnetic index increases when the Coronal Mass Ejections occur on the Sun's surface. The abrupt increase in the geomagnetic index has seriously impacted the accuracy in the forecast of the activity of the next solar cycle. A method is proposed to filter the effect from the Coronal Mass Ejections. The correlation between the geomagnetic index and the activity of the subsequent solar cycle is found to have drastically improved with the proposed scheme. A strong correlation between the maximum amplitude RN of a solar cycle N and its pre-cycle coronal mass ejections adjusted monthly geomagnetic activity index has been qualitatively determined, as illustrated by an impressive correlation coefficient of 0.91+0.09-0.12, with its statistical significance estimated at 4.3 σ. The corrected data have significantly improved the correlation between the observed variables from their original un-corrected case of 0.63 ± 0.23. Our result indicates that the upcoming solar cycle, estimated at R25 = 147 ± 30, would be stronger than the current waning solar cycle 24. In a related calculation, the magnetic poles reversals occurring in the solar cycles 21 and 22 are reproduced numerically from Maxwell's electromagnetic equations.

Published in American Journal of Astronomy and Astrophysics (Volume 7, Issue 1)
DOI 10.11648/j.ajaa.20190701.12
Page(s) 10-17
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Sunspots, Solar Flares, Solar Cycles, Precursor Method, Geomagnetic Activity, Magnetic Field, Magnetic Poles Reversal

References
[1] Kappenman, J. G., L. J. Zanetti, and W. A. Radasky, Geomagnetic storm forecasts and the power industry. Eos Trans. AGU 78, 37 (1997).
[2] Shepherd Simon J., Zharkov Sergei I., Zharkova Valentina V. Prediction of solar activity from solar background magnetic field variations in cycles 21-23. ApJ. 795, 46 (2014).
[3] Gkana, A., Zachilas, L. Re-evaluation of predictive models in light of new data: Sunspot number version 2.0. Solar Phys. 291, 2457 (2016).
[4] Pesnell, W. D. Predictions of Solar Cycle 24: How are we doing? Space Weather 14 (1), 10-21 (2016).
[5] Javaraiah J. Long-term variations in the north-south asymmetry of solar activity and solar cycle prediction, III: Prediction for the amplitude of solar cycle 25. New Astron. 34, 54-64 (2015).
[6] Miao Juan, Gong J., Li Z., Ren T. The prediction of maximum amplitude of solar cycle 25. Scientia Sinica Physica, Mechanica & Astronomica, 45, 099601 (2015).
[7] Helal, H. R., Galal, A. An early prediction of the maximum amplitude of the solar cycle 25. J. Adv. Res. 4 (3), 275-278, (2013).
[8] Yoshida, A., Difference between even- and odd-numbered cycles in the predictability of solar activity and prediction of the amplitude of cycle 25. Ann. Geophys. 32, 1035-1042, (2014).
[9] Lampropoulos G., Mavromichalaki H., Tritakis V. Possible Estimation of the Solar Cycle Characteristic Parameters by the 10.7 cm Solar Radio Flux. Solar Phys. 291 989-1002 (2016).
[10] Pesnell, W. D. and Schatten K. H. An Early Prediction of the Amplitude of Solar Cycle 25. Solar Phys. 293, 112 (2018).
[11] Pesnell, W. D. Predicting solar cycle 24 using a geomagnetic precursor pair. Solar Phys. 289, 2317-2331 (2014).
[12] Bhatt, Nipa J., Jain, Rajmal and Aggarwal, M. Predicting maximum sunspot number in solar cycle 24. Journal of Astrophysics and Astronomy 30, 71 (2009).
[13] Du Z. L. The correlation between solar and geomagnetic activity. Ann. Geophys. 29, 1005- 1018, (2011).
[14] Ng, K. K. Prediction Methods in Solar Sunspots Cycles. Scientific Reports 6, 21028 (2016).
[15] Ohl A. I. Wolf’s number prediction for the maximum of the cycle 20. Soln. Dannye. 12, 84 (1966).
[16] Thompson, R. J. A technique for predicting the amplitude of the solar cycle. Solar Physics. 148, 383-388 (1993).
[17] Feynman, J. Geomagnetic and solar wind cycles, 1900-1975. J. Geophys. Res. 87, 6153-6162 (1982).
[18] Lockwood M., Stamper R., and Wild M. N., A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437-439 (1999).
[19] Winter L. M., Balasubramaniam K. S. Estimate of solar maximum using the 1–8 ˚A geostationary operational environmental satellites x-ray measurements. ApJ. L., 793, L45, (2014).
[20] Babcock, H. D., The Sun's polar magnetic field. ApJ, 130, 364, (1959).
[21] Deutsch, A. J. The electromagnetic field of an idealized star in rigid rotation in vacuo. Annales D'Astrophysique. 18, 1 (1955).
[22] Melatos A. Radiative precession of an isolated neutron star. MNRAS. 313, 217 (2000).
[23] Zanazzi, J. J. & Lai D. Electromagnetic torques, precession and evolution of magnetic inclination of pulsars. MNRAS. 451, 1, 695-704 (2015).
[24] Good, M. L. & Ng, K. K. Electromagnetic torques, secular alignment, and spin-down of neutron stars. ApJ. 299, 706 (1985).
[25] Livingstone, M. A., Kaspi, V. M., Gavriil, F. P., Manchester, R. N., Gotthelf, E. V., Kuiper, L., New Phase-coherent Measurements of Pulsar Braking Indices, Astrophysics and Space Science 308, 1-4, (2007).
[26] Ng, K. K. Relativistic correction to the movement of magnetic poles. ApJ. 714, 675-679 (2010).
[27] Smith et al. The Sun and heliosphere at solar maximum. Science. 302, 1165 (2003).
[28] Hoeksema, J. T. The large scale structure of the heliospheric current sheet during the ULYSSES epoch. Space Sci. Reviews 72, 137-148 (1995).
[29] Svalgaard, L., Duvall, T. L. Jr., Scherrer, P. H. The strength of the Sun's polar fields. Solar Physics 58, Issue 2, 225-239 (1978).
Cite This Article
  • APA Style

    Kim Kwee Ng. (2019). Coronal Mass Ejections, Solar Cycles and Magnetic Poles Reversal. American Journal of Astronomy and Astrophysics, 7(1), 10-17. https://doi.org/10.11648/j.ajaa.20190701.12

    Copy | Download

    ACS Style

    Kim Kwee Ng. Coronal Mass Ejections, Solar Cycles and Magnetic Poles Reversal. Am. J. Astron. Astrophys. 2019, 7(1), 10-17. doi: 10.11648/j.ajaa.20190701.12

    Copy | Download

    AMA Style

    Kim Kwee Ng. Coronal Mass Ejections, Solar Cycles and Magnetic Poles Reversal. Am J Astron Astrophys. 2019;7(1):10-17. doi: 10.11648/j.ajaa.20190701.12

    Copy | Download

  • @article{10.11648/j.ajaa.20190701.12,
      author = {Kim Kwee Ng},
      title = {Coronal Mass Ejections, Solar Cycles and Magnetic Poles Reversal},
      journal = {American Journal of Astronomy and Astrophysics},
      volume = {7},
      number = {1},
      pages = {10-17},
      doi = {10.11648/j.ajaa.20190701.12},
      url = {https://doi.org/10.11648/j.ajaa.20190701.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaa.20190701.12},
      abstract = {The magnitude of the measured geomagnetic index increases when the Coronal Mass Ejections occur on the Sun's surface. The abrupt increase in the geomagnetic index has seriously impacted the accuracy in the forecast of the activity of the next solar cycle. A method is proposed to filter the effect from the Coronal Mass Ejections. The correlation between the geomagnetic index and the activity of the subsequent solar cycle is found to have drastically improved with the proposed scheme. A strong correlation between the maximum amplitude RN of a solar cycle N and its pre-cycle coronal mass ejections adjusted monthly geomagnetic activity index has been qualitatively determined, as illustrated by an impressive correlation coefficient of 0.91+0.09-0.12, with its statistical significance estimated at 4.3 σ. The corrected data have significantly improved the correlation between the observed variables from their original un-corrected case of 0.63 ± 0.23. Our result indicates that the upcoming solar cycle, estimated at R25 = 147 ± 30, would be stronger than the current waning solar cycle 24. In a related calculation, the magnetic poles reversals occurring in the solar cycles 21 and 22 are reproduced numerically from Maxwell's electromagnetic equations.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Coronal Mass Ejections, Solar Cycles and Magnetic Poles Reversal
    AU  - Kim Kwee Ng
    Y1  - 2019/07/26
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ajaa.20190701.12
    DO  - 10.11648/j.ajaa.20190701.12
    T2  - American Journal of Astronomy and Astrophysics
    JF  - American Journal of Astronomy and Astrophysics
    JO  - American Journal of Astronomy and Astrophysics
    SP  - 10
    EP  - 17
    PB  - Science Publishing Group
    SN  - 2376-4686
    UR  - https://doi.org/10.11648/j.ajaa.20190701.12
    AB  - The magnitude of the measured geomagnetic index increases when the Coronal Mass Ejections occur on the Sun's surface. The abrupt increase in the geomagnetic index has seriously impacted the accuracy in the forecast of the activity of the next solar cycle. A method is proposed to filter the effect from the Coronal Mass Ejections. The correlation between the geomagnetic index and the activity of the subsequent solar cycle is found to have drastically improved with the proposed scheme. A strong correlation between the maximum amplitude RN of a solar cycle N and its pre-cycle coronal mass ejections adjusted monthly geomagnetic activity index has been qualitatively determined, as illustrated by an impressive correlation coefficient of 0.91+0.09-0.12, with its statistical significance estimated at 4.3 σ. The corrected data have significantly improved the correlation between the observed variables from their original un-corrected case of 0.63 ± 0.23. Our result indicates that the upcoming solar cycle, estimated at R25 = 147 ± 30, would be stronger than the current waning solar cycle 24. In a related calculation, the magnetic poles reversals occurring in the solar cycles 21 and 22 are reproduced numerically from Maxwell's electromagnetic equations.
    VL  - 7
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Physics and Astronomy, State University of New York at Stony Brook, New York, USA

  • Sections