Asymptotically Safe Pure Gravity as the Source of Dark Energy of the Vacuum
International Journal of Astrophysics and Space Science
Volume 2, Issue 1, February 2014, Pages: 12-15
Received: Mar. 11, 2014; Accepted: Apr. 8, 2014; Published: Apr. 10, 2014
Views 2549      Downloads 92
Author
Mohamed S. E. Naschie, Dept. of Physics, University of Alexandria, Alexandria, Egypt
Article Tools
Follow on us
Abstract
Dark energy can be understood in terms of the asymptotic safety of pure gravity. The present short paper shows how pure gravity, quantum mechanics and fractal spacetime are different aspects of the same reality. Results and conclusions are subsequently reinforced and partially reproduced using different theories related to phase transition, Unruh temperature and ‘t Hooft renormalization.
Keywords
Dark energy, Pure gravity, Asymptotic Safety, Conformal Golden Geometry, Fractal Spacetime, E-infinity Theory, Dimensionless Temperature, Unruh Temperature, ‘t Hooft Fractal Spacetime, Dimensional Regularization
To cite this article
Mohamed S. E. Naschie, Asymptotically Safe Pure Gravity as the Source of Dark Energy of the Vacuum, International Journal of Astrophysics and Space Science. Vol. 2, No. 1, 2014, pp. 12-15. doi: 10.11648/j.ijass.20140201.13
References
[1]
W. Woodin, Strong axioms of infinity and the search for V. In Proceedings of the Int. Congress of Mathemetics, Hyderabad 2010, Vol. 1. Plenary lectures and ceremonies. Editor Rajendra |Bhatia, Hidustan Book Co., New Delhi, 2010, pp. 504-530.
[2]
R. Elwes, Ultimate Logic. New Scientist, 30 July 2011, pp. 30-33.
[3]
M.S. El Naschie, A resolution of cosmic dark energy via a quantum entanglement relativity theory. J. Quantum Info. Sci., 3(1), 2013, pp. 23-26.
[4]
M.S. El Naschie, The fractal geometric origin of quantum mechanics from Hardy’s quantum entanglement. Journal of E-infinity & Complexity Theory in High Energy Phys. & Eng., 1(1), 2011, pp. 1-7.
[5]
M.S. El Naschie, Topological-geometrical and physical interpretation of the dark energy of the cosmos as a ‘halo’ energy of the Schrödinger quantum wave. J. Modern Phys., 4(5), 2013, pp. 591-596.
[6]
M.S. El Naschie, Dark energy from Kaluza-Klein space time and Noether’s theorem via Lagrangian multiplier method. J. of Mod. Phys., Vol. 4, No. 6, 2013, pp. 757-760.
[7]
M. Kaku, Introduction to Superstrings and M-Theory. Springer, New York, 1999.
[8]
D. Kutasov and N. Seiberg, Number of degrees of freedom, density of states and tachyons in string theory and CFT. Nucl. Phys. B, 358(3), 1991, pp. 600-618.
[9]
M.J. Duff, The World in Eleven Dimensions. Inst. of Phys. Publications, Bristol, 1999.
[10]
A. Vilenkin, and E.S. Shellard, Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge, 1994.
[11]
H. Lehning, Dynamics of typical continuous functions. Proc. of the American Math. Soc., 123(6), 1995, pp. 1703-1707.
[12]
M.S. El Naschie, The theory of Cantorian spacetime and high energy particle physics (an informal review). Chaos, Solitons & Fractals, 41(5), 2009, pp. 2635 – 2646.
[13]
S.I. Nada, Density manifolds, geometric measures and high energy physics in transfinite dimensions. Chaos, Solitons & Fractals, 42, 2009, pp. 1539-1547.
[14]
M.S. El Naschie, A unified Newtonian-relativistic quantum resolution of the supposedly missing dark energy of the cosmos and the constancy of the speed of light. Int. J. Modern Nonlinear Sci. & Application., 2(1), 2013, pp. 43-54.
[15]
M.S. El Naschie, Nash embedding of Witten’s M-theory and the Hawking-Hartle quantum wave of dark energy. J. Mod. Phys., 4, 2013, pp. 1417-1428.
[16]
M.S. El Naschie, Exact non-perturbative derivation of gravity’s fine structure constant, the mass of the Higgs and elementary black holes. Chaos, Solitons & Fractals, 37(2), 2008, pp. 346-359.
[17]
M.A. Helal, L. Marek-Crnjac and Ji-Huan He, The three page guide to the most important results of M.S. El Naschie’s research in E-infinity and quantum physics and cosmology. Open J. Microphys., 3(4), 2013, pp. 141-145.
[18]
M.S. El Naschie, Experimentally based theoretical arguments that Unruh’s temperature, Hawking’s vacuum fluctuation and Rindler’s wedge are physically real. American J. Mod. Phys., 2(6), 2013, pp. 357-361.
[19]
M.S. El Naschie, Pinched material Einstein spacetime produces accelerated cosmic expansion. Int. J. Astron. & Astrophys. 4(1), 2014 pp. 80-90.
[20]
M.S. El Naschie, A Rindler-KAM spacetime geometry and scaling the Planck scale solves quantum relativity and explains dark energy. Int. J. of Astronomy and Astrophysics, 3(4), 2013, pp. 483-493.
[21]
M.S. El Naschie, The theory of Cantorian spacetime and high energy particle physics (an informal review). Chaos, Solitons & Fractals, 41(5), 2009, pp. 2635 – 2646.
[22]
Y. Nutku, C. Saclioglu and T. Turgut (Editors): Conformal Field Theory. Perseus Publishing, New York, 2000.
[23]
M.S. El Naschie, P-Adic unification of the fundamental forces and the standard model. Chaos, Solitons & Fractals, 38, 2008, pp. 1011-1012.
[24]
P. Mason, Quantum Glory. XP Publishing, Arizona, USA 2010.
[25]
Leonard M Wapner,.The Pea and The Sun. A.K. Peters Ltd. Wellesley, MA 02482, 2005.
[26]
Valeri A. Rubakov, Large and infinite extra dimensions. Physics-Uspekhi, 44(9), 2001, pp. 871-893.
[27]
L. Marek-Crnjac, Cantorian Space-Time Theory – The Physics of Empty Sets in Connection With Quantum Entanglement and Dark Energy. Lambert Academic Publishing, Saarbrücken, Germany, 2013.
[28]
A.M. Shalaby, The fractal self-similar-Borel algorithm for the effective potential of the scalar field theory in one time plus one space dimension. Chaos, Solitons & Fractals, 34, 2007, pp. 709-716.
[29]
M.S. El Naschie, Renormalization approach to the dimension of diffusion in Cantorian space. Appl. Math. Lett., 8(1), 1995, pp. 59-63.
[30]
I. Gottlieb, M. Agop and M. Jarcau, El Naschie’s Cantorian space-time and general relativity by means of Barbilian’s group: A Cantorian axiomatic model of spacetime. Chaos, Solitons & Fractals, 19(4), 2004, pp. 705-730.
[31]
M.S. El Naschie, The meta energy of dark energy. Open J. of Philosophy, 2014. In press.
[32]
M.S. El Naschie, Logarithmic running of ‘t Hooft-Polyakov monopole to dark energy. Int. J. High Energy Phys., 1(1), 2014, pp. 1-5.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931