Well Behaved Charge Analogues of Wyman-Adler Exact Solution for a Self-Bound Star
International Journal of Astrophysics and Space Science
Volume 2, Issue 3, June 2014, Pages: 46-55
Received: Jul. 25, 2014; Accepted: Aug. 9, 2014; Published: Aug. 20, 2014
Views 1576      Downloads 56
A. H. M. Mahbubur Rahman, Department of Civil Engineering, Southern University Bangladesh, Bangladesh
M. Rubayet Rahman, Faculty of Math and Science, Asian University for Women, Bangladesh
A. S. M. Mohiul Islam, Department of Mathematics, University of Chittagong, Bangladesh
Article Tools
Follow on us
The exact analytical Wyman-Adler’s relativistic solution describing the interior of a charged spherical strange star candidate is found under the assumption and existence of two parameters K and m. The interior self-bound star matter, pressure, energy density and the adiabatic sound speed are represented in terms of simple algebraic function. The analytic solution depicts a unique static charged configuration of quark matter with radius R~9 km and total mass M~2.5M¬¬⊙. And try to investigate the velocity of sound approximately 1/√3 which is similar to the attitude of SQM (Strange Quark matter). Based on analytic model in the recent work, the applicable values of physical quantities have been calculated by accepting the estimated masses and radii of some well-known strange star candidates like PSR J1903+327, Her X-1, Cen X-3, EXO 1785-248. The equation of state of the charge matter distribution may play a major role in the study of the interior structure of highly compact charge stellar object in astrophysical study.
Exact Solution, Einstein-Maxwell, Reissner–Nordström, Relativistic Astrophysics, Compact Star, Equation of State
To cite this article
A. H. M. Mahbubur Rahman, M. Rubayet Rahman, A. S. M. Mohiul Islam, Well Behaved Charge Analogues of Wyman-Adler Exact Solution for a Self-Bound Star, International Journal of Astrophysics and Space Science. Vol. 2, No. 3, 2014, pp. 46-55. doi: 10.11648/j.ijass.20140203.12
Pant, N., Rajasekhara, S.: Variety of well-behaved parametric classes of relativistic charged fluid spheres in general relativity. Astrophys. Space Sci. 333, 161-168 (2011). Doi:10.1007/s10509-011-0607-z
Nduka, A.: Charged fluid sphere in general relativity, Gen. Relativ. Gravit. 7 (1976) 493―499, doi:10.1007/BF00766408
Nduka, A.: Static solutions of Einstein’s field equations for charged spheres of fluid, Acta Phys. Pol. B 9 (1978) 596―571.
Mehra, A. L., Bohra, B. L.: Gen. Relativ. Gravit. 11, 333–336 (1979). doi:10.1007/BF00759275
Pant, N., Faruqi, S.: Relativistic modelling of a superdense star containing a charged perfect fluid, Gravit. Cosmol. 18 (2012) 204―210, DOI:10.1134/S0202289312030073
Pant, N., Mehta, R. N., Tewari, B. C., Astrophys. Space Sci. 327, 279 (2010).
Pant, N., Tewari, B. C., Astroph. Space Sci. 331, 645 (2010).
Pinheiro, G. and Chan, R., Gen. Rel. Grav. 40, 2149 (2008).
Bordbar, G H., Bahri, H., Kayanikhoo, F.: Calculation of the Structure Properties of a Strange Quark Star in the Presence of Strong Magnetic Field Using a Density Dependent Bag Constant, Research in Astron. Astrophys. 12 (2012) 1280
Fatema, S., Murad, M. H.: An Exact Family of Einstein – Maxwell Wyman – Adler Solution in General Relativity, Int J Theor Phys, doi: 10.1007/s10773-013-1538-y (2013).
Schmitt, A.: Dense Matter in Compact Stars: A Pedagogical Introduction. Lecture Notes in Physics, vol. 811. Springer, Berlin (2010)
Camenzind, M.: Compact Objects in Astrophysics White Dwarfts, Neutron Stars and black Holes. Astrophysics and Space Science Library. Springer, Berlin (2007)
Ghosh, P.: Rotation and Accretion Powered Pulsars. World Scientific Series in Astronomy and Astrophysics, vol. 10. World Scientific, Singapore (2010)
Farhi, E., Olinto, A., 1986, Astrophys. J. 310, 261
Shapiro, S., Tenkolsky, S., 1983, Black Holes, White Dwarfs, and Neutron Stars, Wiley.
Rahman, A H M., Murad, M H.: Some electrically charged relativistic stellar models in general relativity, Astrophys Space Sci. doi: 10.1007/s10509-014-1823-0 (2014)
Weber, F., et al.: In: van Leeuwen, J. (ed.) Neutron Stars and Pulsars: Challenges and Opportunities After 80 Years. Proceedings IAU Symposium, vol. 291, pp. 61–66 (2012). doi: 10.1017/S1743921312023174
Alcock, C., Farhi, E., Olinto, A.: Strange stars. Astrophys. J. 310, 261 (1986). doi:10.1086/164679
Usov, V.V.: Phys. Rev. D, Part. Fields 70, 067301 (2004). doi:10.1103/PhysRevD.70.067301
Usov, V.V., et al.: Astrophys. J. 620, 915 (2005). doi:10.1086/427074
Negreiros, R. P., et al.: Phys. Rev. D 82, 103010 (2010). doi:10.1103/PhysRevD.82.103010
Ray, S., et al.: Phys. Rev. D 68, 084004 (2003). doi:10.1103/PhysRevD.68.084004
Malheiro, M., et al.: Int. J. Mod. Phys. D 13, 1375 (2004). doi:10.1142/S0218271804005560
Weber, F., et al.: Int. J. Mod. Phys. E 16, 1165 (2007). doi:10.1142/S0218301307006599
Weber, F., et al.: Neutron star interiors and the equation of state of superdense matter. In: Becker, W. (ed.) Neutron Stars and Pulsars. Astrophysics and Space Science Library, vol. 357, pp. 213–245. Springer, Berlin (2009)
Weber, F., et al.: Int. J. Mod. Phys. D 19, 1427 (2010). doi:10.1142/S0218271810017329
Negreiros, R. P., et al. Phys. Rev. D 80, 083006 (2009). doi:10.1103/PhysRevD.80.083006
Jaikumar, P., Reddy, S., Steiner, A. W.:Phys. Rev. Lett. 96 (2006) 041101
Patel, L. K., Tikekar, R., Sabu, M.C.: Gen. Relativ. Gravit. 29, 489 (1997). doi:10.1023/A:1018886816863
Gupta, Y. K., Maurya, S.K.: Astrophys. Space Sci. 332, 155 (2011). doi:10.1007/s10509-010-0503-y
Murad, H. M., Fatema, S.: Int. J. Theor. Phys. (2013). doi:10.1007/s10773-013-1752-7
Fatema, S., Murad, H.M.: Int. J. Theor. Phys. 52, 2508 (2013). doi:10.1007/s10773-013-1538-y
Buchdahl, H. A.: Regular general relativistic charged fluid spheres. Acta Phys. Pol. B 10, 673–685 (1979)
Rhoades, C.E., Ruffini, R.: Maximum mass of a neutron star. Phys. Rev. Lett. 32, 324–327 (1974). doi:10.1103/PhysRevLett.32.324
Hartle, J. B.: Bounds on the mass and moment of inertia non-rotating neutron stars. Phys. Rep. 46, 201–247 (1978). doi:10.1016/0370-1573(78)90140-0
Hegyi, D., Lee, T.-S. H., Cohen, J.M.: The maximum mass of non-rotating neutron stars. Astrophys. J. 201, 462–466 (1975). doi:10.1086/153908
Mak, M. K., Harko, T.: Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D 13, 149–156 (2004). doi:10.1142/S0218271804004451
Chattopadhyay, P. K., Deb, R., Paul, B. C.: Relativistic solution for a class of static compact charged star in pseudo-spheroidal spacetime. Int. J. Mod. Phys. D 21, 1250071 (2012). doi:10.1142/S021827181250071X
Böhmer, C. G., Harko, T.: Minimum mass radius ratio for charged gravitational objects. Gen. Relativ. Gravit. 39, 757–775 (2007). doi:10.1007/s10714-007-0417-3
Buchdahl, H. A.: General relativistic fluid spheres. Phys. Rev. 116, 1027–1034 (1959). doi:10.1103/PhysRev.H6.1027
Buchdahl, H. A.: Regular general relativistic charged fluid spheres. Acta Phys. Pol. B 10, 673–685 (1979)
Tikekar, R.: Spherical charged fluid distributions in general relativity. J. Math. Phys. 25, 1481–1483 (1984). doi:10.1063/1.526318
Tolman, R. C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939). doi:10.1103/PhysRev.55.364
Durgapal, M. C.: A class of new exact solutions in general relativity. J. Phys. A, Math. Gen. 15, 2637–2644 (1982). doi:10.1088/0305-4470/15/8/039
Lake, K.: All static spherically symmetric perfect-fluid solutions of Einstein’s equations. Phys. Rev. D 67, 104015 (2003). doi:10.1103/PhysRevD.67.104015
Ishak, M., et al.: Phys. Rev. D 64, 024005 (2001). doi:10.1103/PhysRevD.64.024005
Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 334, 145 (2011a). doi:10.1007/s10509-011-0705-y
Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 334, 301 (2011b). doi:10.1007/s10509-011-0736-4
Lattimer, J.M., Prakash, M.: Phys. Rev. Lett. 94, 111101 (2005). doi:10.1103/PhysRevLett.94.111101
Li, X.-D., et al.: Phys. Rev. Lett. 83, 3776 (1999). doi:10.1103/PhysRevLett.83.3776
Dey, M., et al.: Phys. Lett. B 438, 123 (1998). doi:10.1016/S0370-2693(98)00935-6
Gangopadhyay, T., et al.: (2013). doi:10.1093/mnras/stt401
Weber, F.: Prog. Part. Nucl. Phys. 54, 193 (2005). doi:10.1016/j.ppnp.2004.07.001
Kiess, T.: Astrophys. Space Sci. 339, 329 (2012). doi:10.1007/s10509-012-1013-x
Science Publishing Group
NEW YORK, NY 10018
Tel: (001)347-688-8931