Effect of Ambipolar Diffusion on the Flow of a Two-Component Plasma Gas Model in the Earth’s Planetary Ionosphere
International Journal of Astrophysics and Space Science
Volume 5, Issue 3, June 2017, Pages: 47-54
Received: Dec. 23, 2016; Accepted: Jan. 5, 2017; Published: Aug. 22, 2017
Views 2297      Downloads 94
B. S. Tuduo, Applied Mathematics and Theoretical Physics Group, Department of Physics, University of Port Harcourt, Port Harcourt, Nigeria
T. M. Abbey, Applied Mathematics and Theoretical Physics Group, Department of Physics, University of Port Harcourt, Port Harcourt, Nigeria
Article Tools
Follow on us
The paper presents analytical study on the effect of ambipolar diffusion on the flow of a two-component plasma gas in the Earth’s Planetary Ionosphere as a model to examine the ions-neutral and electrons-neutral atom interactions. The problem which consists of a set of partial non-linear differential equations was addressed using a plane wave and perturbation method of solutions. The result indicates that plasma frequency and electron-density in the Ionosphere increase with increase in magnetic field strength as well as with radiation and free convection parameters. It is observed that for; the plasma interactive state becomes more stable, otherwise some bit of oscillation is noticed. The stability is seen to depend on the magnetic (M2) and thermal convection (Gr) parameters. Under this condition the signal propagation becomes less diffuse when the frequency of the signal is far greater than the plasma frequency, that is, ω >> p. The study aids our understanding of the effect of coupling frequency on the propagation of satellite signals through the ionosphere.
Ambipolar Diffusion, Two-Component Plasma Flow, Planetary Ionosphere
To cite this article
B. S. Tuduo, T. M. Abbey, Effect of Ambipolar Diffusion on the Flow of a Two-Component Plasma Gas Model in the Earth’s Planetary Ionosphere, International Journal of Astrophysics and Space Science. Vol. 5, No. 3, 2017, pp. 47-54. doi: 10.11648/j.ijass.20170503.12
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Carozzi, T. D. (2000); Radio Waves in the Ionosphere Propagation, generation and detection, IRF Scientific Report 272.
Hunsucker, R. D. and Hargreaves, J. K. (2003); The high-latitude Ionosphere and its efects on radio propagation, Cambridge University Press.
Balan, N. (2007); Planentary Ionosphere, Kodaikanal Obseratory, Indian Institute of Astrophysics.
Onwuneme, S. E. (2009); F-Layer peak electron density variations in the ionosphere, African J. Phys, 2, 45-57.
Abbey, T. M., Alagoa, K. D. and Onwuneme, S. E., (2011); Propagation of MHD waves in stratified electron-plasma of the ionosphere, African J. Phys. 3, 103-119.
Zolesi, B. and Cander, L. R. (2014); Ionospheric Prediction and Forecasting, Springer Geophysics, © Springer-Verlag Berlin Heidelberg.
Kane, R. P. (1992); Sunspots, solar radio noise, solar EUV and Ionospheric fo2, J. Atmos. Terr. Phys., 54, 463-466.
Balan, N., Bailey, G. J., Jenkins, B., Rao, P. B. and Moffett, R. J. (1994); Variations of ionospheric ionization and related solar fluxes during an intense solar cycle, J. Geophys. Res., 99(A2), 2243-2253.
Balan, N., Bailey, G. J. and Moffett, R. J. (1994); Modeling studies of ionospheric variations during an intense solar cycle, J. Geophys. Res., 99(A9), 17467-17475.
Leake, J. E., DeVore, C. R., Thayer, J. P., Burns, A. G., Crowley, G., Gilbert, H. R., Huba, J. D., Krall, J., Linton, M. G., Lukin, V. S., Wang, W., (2016); Chromosphere and Earth’s Ionosphere/Thermosphere, arXiv:1310.0405v4 [astro-ph.SR].
Elmegreen, B. G. (1979); ApJ, 232, 729.
Myers, P. C. (1985); Protostars and Planets II, ed. M. S. Matthews and D. C. Black (Tucson, AZ: Univ. Arizona Press), 81.
Van Loo S., FalleS. A. E. G., Hartquist1, T. W. and Barker, A. J., (2008); The effect of ambipolar resistivity on the formation of dense cores, Astronomy and Astrophysics manuscript no. version 2.
Choi Eunwoo, Jongsoo Kim and Paul J. Wiita (2009); An explicit scheme for incorporating ambipolar diffusion in a magnetohydrodynamics code, The Astrophysical Journal Supplement Series181, 413.
Bai, Xue-Ning and Stone, M. James (2011); Effect of ambipolar diffusion on the non-linear evolution of Magnetorotational Instability in weakly ionized disks, Princeton University, Princeton, NJ, 08544.
Mestel, L. and Spitzer, L., Jr. (1956); MNRAS, 116, 503.
Mouschovias, T. Ch. (1976); ApJ, 207, 141.
Shu, F. H., Adams, F. C., and Lizano, S. (1987); Ara, A25, 23.
Committee on Solar and Space Physics, National Research Council (2004); Plasma Physics of the Local Cosmos, The National Academies Press, Washington, D. C.
Tóth, G. (1994); ApJ, 425, 171.
Mac Low, M.-M., Norman, M. L., Königl, A., and Wardle, M. (1995); ApJ, 442, 726.
Mac Low, M.-M. and Smith, M. D. (1997); ApJ, 491, 596.
Smith, M. D. and Mac Low, M.-M. (1997); AandA, 326, 801.
Stone, J. M. (1997); ApJ, 487, 271.
Li, P. S., McKee, C. F., and Klein, R. I. (2006); ApJ, 653, 1280.
Tilley, D. A. and Balsara, D. S. (2008); MNRAS, 389, 1058.
Padoan, P., Zweibel, E., and Nordlund, A. (2000); ApJ, 540, 332.
Falle, S. A. E. G. (2003); MNRAS, 344, 1210.
O'Sullivan, S. and Downes, T. P. (2006); MNRAS, 366, 1329.
O'Sullivan, S. and Downes, T. P. (2007); MNRAS, 376, 1648.
Oishi, J. S. and Mac Low, M.-M. (2006); ApJ, 638, 281.
Li, P. S., McKee, C. F., Klein, R. I., and Fisher, R. T. (2008); ApJ, 684, 380.
Pandey, B. P. (2016); The magnetohydrodynamic description of Earth´s ionosphere, arXiv: 1610.03735v1 [physics.plasm-ph].
Cheng, P. (1964); Two-Dimensional radiating gas flow by moment method, AIAAJ 2 1662.
Bestman A. R. (1983); Low Reynolds number flow in a heated tube of varying section, J. Austral. Math. Soc. Ser. B. 25, 244–260.
Abbey, T. M, Bestman, A. R. and Mbeledeogu, I. U. (1992); Flow of a Two-component plasma model in a porous rotating hot sphere, Astrophys and Space Sci, 197, 67-76.
Abbey, T. M. and Bestman, A. R. (1995); Slip flow in a two-component plasma model with radiative heat transfer, International Journal of Energy Research, 19: 1–6.
Alagoa, K. D., Tay, G. and Abbey, T. M. (1999); Radiative and convective effects of A MHD flow through a porous medium sandwiched between two infiniteparallel plates with time dependent suction, Astrophysics and space Science, 260,455-468.
Sanderson, J. J. (1974); Plasma waves in plasma physics lecture series, Edited by B. E. Keen, Institute of physics (IOP) - Publishers London.
Priest, E. R. (1982); Solar magneto-hydrodynamics 1, D. Reidel Publishing Company, Holland.
Steven, J. Schwartz, Christopher, J. Owen1, and David Burgess (2002); Astrophysical Plasmas, Astronomy Unit, Queen Mary, University of London, London E1 4NS, U.K.
Desch, S. J. (2004); Linear Analysis of the Magnetorotational Instability including ambipolar diffusion with application to protoplanetary disks, The Astrophysical Journal, 608: 509-525.
Stefan, M. (2006); Conductivity of the ionosphere, CIRES, University of Colorado.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186