Anisotropic Fluid Star Model in Isotropic Coordinates
International Journal of Astrophysics and Space Science
Volume 3, Issue 1-1, February 2015, Pages: 1-5
Received: Sep. 29, 2014; Accepted: Oct. 5, 2014; Published: Oct. 15, 2014
Views 1589      Downloads 105
Authors
Neeraj Pant, Mathematics Department, National Defence Academy, Khadakwasla, Pune-411023, India
Narendra Pradhan, Physics Department, National Defence Academy, Khadakwasla, Pune-411023, India
Manuel Malaver, Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela
Article Tools
Follow on us
Abstract
We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for anisotropic neutral fluid, compatible with a super dense star modeling by considering a specific choice of anisotropy factor  that includes a positive constant “” defined as anisotropy parameter, which varies the relation between the radial and tangential pressure. Further, we have constructed a super-dense star model with all degree of suitability. We have found that the maximum mass decreases with the increase of anisotropy parameter (α). The robustness of our result is that it matches with the recent discoveries.
Keywords
Isotropic Coordinates, Anisotropic Neutral Fluid, Anisotropy Parameter, Super-Dense Star Model, Radial Pressure, Tangential Pressure
To cite this article
Neeraj Pant, Narendra Pradhan, Manuel Malaver, Anisotropic Fluid Star Model in Isotropic Coordinates, International Journal of Astrophysics and Space Science. Special Issue:Compact Objects in General Relativity. Vol. 3, No. 1-1, 2015, pp. 1-5. doi: 10.11648/j.ijass.s.2015030101.11
References
[1]
Bowers, R.L., Liang, E.P.T.: Astrophys. J. 188, 657 (1974).
[2]
Canuto, V., Lodenquai, J.: Phys. Rev. C 12, 2033 (1975).
[3]
Chaisi, M., Maharaj, S.D.: Pramana journal of physics 66(3), 609 (2006).
[4]
Das, B., Ray, P.C., Radinschi, I., Rahaman, F., Ray, S.: Int. J. Mod. Phys. D 20, 1675 (2011).
[5]
Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998).
[6]
Esculpi,M.,Malaver,M.,Aloma,E.,:General Relativity and Gravitation ,39,633-652 (2007)
[7]
Herrera, L., Ponce de Leon, J.: J. Math. Phys. 26, 2302 (1985).
[8]
Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997).
[9]
Herrera, L., Ospino, J., Prisco, A.D.: Phys. Rev. D 77, 027502 (2008).
[10]
Herrera, L., Prisco, A.D., Ospino, J., Fuenmayor, E.: J. Math. Phys. 42, 2129 (2001).
[11]
Maharaj, S.D., Takisa, P.M.: Gen. Relativ Gravit. 44, 1419 (2012).
[12]
Maharaj, S.D., Sunzu, J.M., Ray, S.: Eur. Phys. J. Plus 129 (2014).
[13]
Mak, M.K., Harko, T.: Chin. J. Astron. Astrophys. 3, 248 (2002).
[14]
Mak, M.K., Harko, T.: Proc. R. Soc. Lond. A 459, 393 (2003).
[15]
Mak, M.K., Dobson, P.N., Harko, T.: Int. J. Mod. Phys. D 11, 207 (2002).
[16]
Malaver, M.: World Applied Programming., 3, 309 (2013).
[17]
Malaver, M.: Open Science J. Mod. Phys. 1, 6 (2014)
[18]
Maurya, S.K., Gupta, Y.K.: Phys. Scr. 86, 025009 (2012).
[19]
Maurya, S.K., Gupta, Y.K.: Astrophys Space Sci 344, 243 (2013).
[20]
Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 86, 025009 (2014).
[21]
Pant. N,Pradhan,N.,Murad H.M.: Astrophys. Space Sci. (Accepted) 2014a,
[22]
Pant.N., Pradhan,N., Ksh Newton Singh.: Journal of Gravity.doi.org/10.1155/2014/380320 2014b
[23]
Ruderman, R.: A. Rev. Astr. Astrophys. 10, 427 (1972)
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931