A Derivation of the Etherington’s Distance-Duality Equation
International Journal of Astrophysics and Space Science
Volume 3, Issue 4, August 2015, Pages: 65-69
Received: Jun. 24, 2015; Accepted: Jul. 4, 2015; Published: Jul. 10, 2015
Views 3898      Downloads 107
Author
Yuri Heymann, Athens Institute for Education and Research, Physics, Geneva, Sw
Article Tools
Follow on us
Abstract
The Etherington's distance-duality equation is the relationship between the luminosity distance of standard candles and the angular-diameter distance. This relationship has been validated from astronomical observations based on the X-ray surface brightness and the Sunyaev-Zel'dovich effect of galaxy clusters. In the present study, we propose a derivation of the Etherington's reciprocity relation in the dichotomous cosmology.
Keywords
Etherington, Distance Duality, Dichotomous Cosmology
To cite this article
Yuri Heymann, A Derivation of the Etherington’s Distance-Duality Equation, International Journal of Astrophysics and Space Science. Vol. 3, No. 4, 2015, pp. 65-69. doi: 10.11648/j.ijass.20150304.13
References
[1]
I.M.H. Etherington, “LX. On the Definition of Distance in General Relativity”, Philosophical Magazine, Vol. 15, S. 7 (1933), pp. 761-773.
[2]
G.F.R. Ellis, “Relativistic cosmology”, Proceedings of the 47th International School of Physics “Enrico Fermi”, edited by R.K. Sachs (Academic Press, New York and London), Vol. 15 (1971), pp. 104-182.
[3]
G.F.R. Ellis, “On the Definition of Distance in General Relativity: I.M.H. Etherington (Philosophical Magazine ser. 7, vol. 15, 761 (1933))”, General Relativity and Gravitation, Vol. 39 (2007), pp. 1047-1052.
[4]
Y. Heymann, “The Dichotomous Cosmology with a Static Material World and Expanding Luminous World”, Progress in Physics, Vol. 10, Issue 3 (2014), pp. 178-181.
[5]
Y. Heymann, “A Monte Carlo Simulation Framework for Testing Cosmological Models”, Progress in Physics, Vol. 10, Issue 4 (2014), pp. 217-221.
[6]
R.A. Sunyaev, and Ya.B. Zel’dovich, “The Observation of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies”, Comments on Astrophysics and Space Physics, Vol. 4 (1972), pp.173-178.
[7]
J. Silk, and S.D.M. White, “The Determination of qo Using X-Ray and Microwave Measurements of Galaxy Clusters”, The Astrophysical Journal Letters, Vol. 226 (1978), L103.
[8]
F. Bernardis, E. Giusarma, and A. Melchiorri, “Constraints on Dark Energy and Distance Duality from Sunyaev-Zel’dovich Effect and Chandra X-Ray Measurements”, International Journal of Modern physics D, Vol. 15, No. 5 (2006), pp. 759-766.
[9]
J.-P. Uzan, N. Aghanim, and Y. Mellier, “Distance Duality Relation from X-Ray and Sunyaev-Zel’dovich Observations of Clusters”, Physical Review D, Vol. 70, 083533 (2004).
[10]
R. Nair, S. Jhingan, and D. Jain, “Cosmic Distance Duality and Cosmic Transparency”, Preprint, arXiv: astro-ph/1210.2642 (2012).
[11]
R.S. Gonçalves, R.F.L. Holanda, and J.S. Alcaniz, “Testing the Cosmic Distance Duality with X-Ray Gas Mass Fraction and Supernovae Data”, Monthly Notice Letters of the Royal Astronomical Society, Vol. 420, Issue 1 (2012), L43-L47.
[12]
J.A.S. Lima, J.V. Cunha, and V.T. Zanchin, “Deformed Distance Duality Relations and Supernova Dimming”, The Astrophysical Journal Letters, Vol. 742, No. 2 (2011), L26.
[13]
B.A. Bassett, and M. Kunz, “Cosmic Distance-Duality as a Probe of Exotic Physics and Acceleration”, Physical Review D, Vol. 69, 101305 (2004).
[14]
M. Birkinshaw, J.P. Hughes, and K.A. Arnaud, “A Measurement of the Value of the Hubble Constant from the X-Ray Properties and the Sunyaev-Zel'dovich Effect of Abell 665”, The astrophysical Journal, Vol. 379 (1991), pp. 466-481.
[15]
Y. Inagaki, T. Suginohara, and Y. Suto, “Reliability of the Hubble-Constant Measurement Based on the Sunyaev-Zel'dovich Effect”, Publications of the Astronomical Society of Japan, Vol. 47 (1995), pp. 411-423.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931