Optical Parameters and Electrical Transport Properties of Some Barium-Sodium-Borate Glasses Doped Bismuth Oxide
American Journal of Aerospace Engineering
Volume 5, Issue 1, June 2018, Pages: 1-8
Received: Jan. 4, 2018; Accepted: Jan. 22, 2018; Published: Feb. 7, 2018
Views 1620      Downloads 79
Authors
Sayed M. Salem, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Taha Z. Abou-Elnasr, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Wael A. El-Gammal, Egyptian Nuclear & Radiological Regulatory Authority, Cairo, Egypt
Ahmed S. Mahmoud, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Heba A. Saudi, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Ahmed G. Mostafa, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Article Tools
Follow on us
Abstract
Glasses having the composition, [(70-x) mol% B2O3- x mol% Bi2O3- 10 mol% BaO- 20 mol% Na2O, where 0≤ x ≤20], have been prepared by the melt quenching method. Density, molar volume, infrared analysis, optical parameters and Electrical properties have been thoroughly investigated. It was found that, both density and molar volume increased with the gradual replacement of B2O3 by Bi2O3 and the comparison between their experimental and empirical values confirm the amorphous nature and the random structure of all samples. The obtained infrared results indicated that different structural borate groups appeared such as BO4 units (in di-, tri- and penta-borate groups) and BO3 units (in meta- and ortho-borate chains). Also, both BiO3 and BiO6 are present in all Bi doped glasses, and the BiO3 / BiO6 ratio appeared to be approximately stable as Bi2O3 was increased to 15 mol%, then it showed a jump increase when BiO3 reached 20 mol%. The optical band gap energy and cut-off wavelength increased with the increase of Bi2O3 while Urbach energy decreased. On the other hand, the electrical conductivity decreased as Bi2O3 was gradually replaced by B2O3, while the activation energy increased and all samples exhibit semi-conductors behavior and the values of the exponent factor decreased gradually with temperature, which is compatible with the correlated barrier hopping conduction mechanism.
Keywords
Sodium-Borate Glasses, FTIR, Optical Parameters, AC Conductivity
To cite this article
Sayed M. Salem, Taha Z. Abou-Elnasr, Wael A. El-Gammal, Ahmed S. Mahmoud, Heba A. Saudi, Ahmed G. Mostafa, Optical Parameters and Electrical Transport Properties of Some Barium-Sodium-Borate Glasses Doped Bismuth Oxide, American Journal of Aerospace Engineering. Vol. 5, No. 1, 2018, pp. 1-8. doi: 10.11648/j.ajae.20180501.11
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
J. E. Shelby, Introduction to Glass Science and Technology, The Royal Society of Chemis try, UK, (1997).
[2]
S. Sanghi, S. Duhan, A. Agarwal and P. Aghamkar, J. Alloys and Compounds, 488 (2009) 458.
[3]
N. A. Eissa, A. M. Sanad, A. A. El-Saghier, H. A. Sallam and A. G. Mostafa, Acta Physica Hungarica, 59 (1986) 297.
[4]
Krough-Moe, J. Phys. Chem. Glasses, 6 (1965) 46.
[5]
T. Nishida, M. SuzuKi, S. Kubuki, M. Katata and Y. Maeda, J. Non Cryst. Solids, 194 (1996) 23.
[6]
A. Varshneya, "Fundamentals of Inorganic Glasses", Academic Press Inc., New-York, (1994).
[7]
T. Yano, N. Kunimine, S. Shibata and M. Yamane, J. Non-Cryst. Solids, 321 (2003) 137.
[8]
T. Yano, N. Kunimine, S. Shibata and M. Yamane, J. Non-Cryst. Solids, 321 (2003) 157.
[9]
I. Oprea, PhD thesis, Physics Dep., Osnabruck Univ., "Optical Properties of Borate Glass-Ceramics", (2005).
[10]
Kulwinder Kaur, K. J. Singh and Vikas Anand, J. Radiation Physics and Chemistry, 120 (2016) 72.
[11]
H. El Mkami, J. Phys. Chem. Solids, 61 (2000) 153.
[12]
G. S. M. Ahmed, A. S. Mahmoud, S. M. Salem and T. Z. Abo-Elnasr, American J. Phys. & Applications, 3, 4 (2015) 112.
[13]
H. A. Saudi, A. Abd-Elalim, T. Z. Abo-Elnasr and A. G. Mostafa, Nature & Science, 13 (2015) 71.
[14]
S. A. MacDonald, C. R. Schardt, D. J. Masiello and J. H. Simmons, J. Non-Cryst. Solids, 275 (2000) 72.
[15]
A. A. Akatov, B. S. Nikonov, B. I. Omelyanenko, S. V. Stefanovsky and J. C. Marra, Phys. Chem. Glasses, 35 (2009) 245.
[16]
M. S. Aziz, F. Abdel-Wahab, A. G. Mostafa and E. M. El Agwany, J. Mater. Chem. Phys., 91 (2005) 532.
[17]
A. Radu, L. Baia, W. Kiefer and S. Simon, J. Vibrational Spectroscopy, 39 (2005) 130.
[18]
M. A. Marzouk, F. H. El-Batal, W. H. Eisa and N. A. Ghoneima, J. Non-Crystalline Solids, 387 (2014) 155.
[19]
Ravneet Kaur, Surinder Singh and O. P. Pandey, J. Molecular Structure, 1049 (2013) 409.
[20]
T. D. AbdelAziz, F. M. Ezz El-Din, H. A. El Batal and A. M. Abdelghany, J. Spectrochimica Acta Part A, (Molecular and Biomolecular Spectroscopy), 131 (2014) 501.
[21]
P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan and W. Chewpraditkul, J. Physics and Chemistry of Solids, 72 (2011) 245.
[22]
L. Baia, R. Stefan, J. Popp, S. Simon and W. Kiefer, J. Non-Cryst. Solids, 324 (2003) 109.
[23]
R. Iordanova, V. Dimitrov, Y. Dimitriev and D. Klissurski, J. Non-Cryst. Solids, 180 (1994) 58.
[24]
S. Shailajha, K. Geetha, P. Vasantharani and S. P. Sheik Abdul Kadhar, J. Spectrochimica Acta Part A, (Molecular and Biomolecular Spectroscopy), 138 (2015) 846.
[25]
Yasser B. Saddeek and M. S. Gaafar, J. Materials Chemistry and Physics, 115 (2009) 280.
[26]
A. M. Abdel-Ghany, A. A. Bendary, T. Z. Abou-Elnasr, M. Y. Hassaan and A. G. Mostafa, J. Nature and Science, 12 (8) (2014) 153.
[27]
N. F. Mott, E. A. Davis, '' Electronic processes in Non-Crystalline Materials '', Clarendon, Oxford, (1979).
[28]
TG. VM. Rao, AR. Kumar and MR. Reddy, J. Non-Cryst. Solids, 356 (2012) 25.
[29]
CM. Kramjce, IP. Studenyak and MV. Kurik, J. Non-Cryst. Solids, 355 (2009) 54.
[30]
M. Zanini and J. Tauc, J. Non-Cryst. Solids, 23 (1977) 349.
[31]
A. Agarwal, V. P. Seth, S. Sanghi, P. S. Gahlot, and D. R. Goyal, Radiation Effects & Defects in Solids, 158 (2003) 793.
[32]
Ch. Rajasree and Rao. D. Krishna, J. Non-Cryst. Solids, 357 (2011) 836.
[33]
S. R. Elliott, adv. Phys., 18 (1987) 41.
[34]
S. R. Elliott, adv. Phys., 36 (2) (1987) 135.
[35]
V. C. Veeranna Gowda and R. V. Anavenka, Solid Stat. Ionics, 176 (2005) 1393.
[36]
G. Little Flower, G. Sahaya Baskaran, M. Srinivasa Reddy and N. Veeraiah, J. Physica B, 393 (2007) 72.
[37]
D. E. Day, J. Non-Cryst. Solids, 21 (1976) 343.
[38]
E. Mansour, J. Physica B, 362 (2005) 88.
[39]
J. C. Giantini and J. V. Zancheha, J. Non-Cryst. Solids, 34 (1979) 419.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186