| Peer-Reviewed

Structure, Properties and Medical Advances for Biocellulose Applications: A Review

Received: 20 October 2017    Accepted: 8 November 2017    Published: 13 December 2017
Views:       Downloads:
Abstract

Microbial exopolysaccharides (EPS) obtained from microbial sources, became simply available for a broad range of applications, especially for medicine and pharmaceutical industries. One of these EPS bacterial cellulose known as biocellulose (BC). BC is a pure extracellular cellulose, which accumulate outside the cells, produced by several species of microorganisms, like Gluconacetobacter; Achromobacter; Sarcina and Agrobacterium with a great number of applications. It is an organic unbranched polysaccharide, type β-1,4-glucan, composed of glucopyranose residues. Biocellulose is used as artificial skin and occlusive dressings to treat chronic wounds and to heal burns, in microsurgeries as artificial blood vessels, scaffolds in tissue engineering and many other applications. This work represents a review on this remarkably microbial biomaterial and thus an update of a collection of scientific data from original research between 1979 and 2016. The paper started on structural, composition, properties and characterization and biogenesis of this biopolymer, then it gives a synthesis on a variety of biomedical applications.

Published in American Journal of Polymer Science and Technology (Volume 3, Issue 5)
DOI 10.11648/j.ajpst.20170305.12
Page(s) 89-96
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Biopolymer, Biocellulose, Biogenesis, Gluconacetobacter

References
[1] S. Bielecki, A Krystynowicz, M. Turkiewicz, H. Kalinowska, "Bacterial Cellulose", in Biopolymers: Polysaccharides I: Polysaccharides from Prokaryotes, Volume 5, J. Vandamme, S. D. Baets, A. Steinbüchel, Eds. Wiley-VCH Verlag, Weinheim, 2002, pp. 37-90.
[2] J. Perez, J. Muñoz-Dorado, T. de la Rubia, J. Martinez, "Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview", Int Microbiol, vol. 5, pp. 53-63, 2002.
[3] P. Ross, R. Mayer, M. Benziman, "Cellulose biosynthesis and function in bacteria", Microbiol Rev, vol. 55, pp. 35-58, 1991.
[4] W. Al-Abdallah, "Production of Green Biocellulose Nanofibers Through Utilizing Agricultural Wastes", Theses and dissertations, Toronto: Ryerson University, 2013.
[5] N. Suwannapinunt, J. Burakorn, S. Thaenthanee, "Effect of culture conditions on bacterial Cellulose (BC) production from Acetobacter xylinum TISTR976 and physical properties of BC parchment paper", Suranaree J Sci Technol, vol. 14, pp.357-365, 2007.
[6] F. Mohamed, "Synthesis of bacterial cellulose by Acetobacter xylinum sp. using watermelon rind waste for biocomposite application", Thesis, pahang: University malaysia pahang, 2010.
[7] J. R. M. Brown, "Emerging technologies and future prospects for industrialization of microbially derived cellulose, in Harnessing Biotechnology for the 21st Century", in Proceedings of the 9th International Biotechnology Symposium and Exposition, M. R. Ladisch, A. Bose, Eds. Virginia, Washington: American Chemical Society, 1992, pp. 76-79.
[8] A. Casarica, G. Campeanu, M. Moscovici, A. Ghiorghita, V. Manea, "Improvement of bacterial cellulose production by Aceobacter xyilinum DSMZ-2004 on poor quality horticultural substrates using the taguchi method for media optimization", Cellulose Chem Technol, vol. 47, pp. 61-68, 2013.
[9] F. Esa, S. M. Tasirin, N. AbdRahman, "Overview of Bacterial Cellulose Production and Application", Agriculture and Agricultural Science Procedia, vol. 2, pp. 113-119, 2014.
[10] G. F. Perotti, H. S. Barud, S. J. L. Ribeiro, V. R. L, "Constantino, Bacterial Cellulose as a Template for Preparation of Hydrotalcite-Like Compounds", J Braz Chem Soc, vol.25, pp. 1647-1655, 2014.
[11] D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray, A. Dorris, "Nanocelluloses: A New Family of Nature-Based Materials", Angew Chem Int Ed, vol. 50, pp. 5438-5466, 2011.
[12] H. El-Saied, A. H. Basta, R. H. Gobran, "Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application)", Polym Plast Technol Eng, vol. 43, pp.797-820, 2004.
[13] L. Fu, Y. Zhang, J. Zhang, G. Yang, "Bacterial Cellulose for Skin Repair Materials", chapter 13, in Biomedical Engineering-Frontiers and Challenges, R. Fazel, Ed. Croatia, China: In Tech, 2011, pp. 249-274.
[14] F. G. Torres, S. Commeaux, O. P. Troncoso, "Biocompatibility of Bacterial Cellulose Based Biomaterials", J Funct Biomater, vol.3, pp. 864-878, 2012.
[15] C. J. Grande, F. G. Torres, C. M. Gomez, O. P. Troncoso, J. Canet-Ferrer, J. Martínez-Pastor, "Development of self-assembled bacterial cellulose-starch nanocomposites", Mater Sci Eng C, vol. 29, pp. 1098-1104, 2009.
[16] T. Nishino, K. Takano, K. Nakamae, "Elastic modulus of the crystalline regions of cellulose polymorphs", Journal of Polymer Science Part B: Polymer Physics, vol. 33, pp. 1647-1651, 1995.
[17] L. Dobre, A. Stoica, M. Stroescu, S. Jinga, I. Jipa, T. Dobre, "Characterization of composite materials based on biocellulose membranes impregnated with silver particles as antimicrobial agent", UPB Sci Bull, Series B, vol.72, pp.55-64, 2010.
[18] C. Castro, R. Zuluaga, J-L. Putaux, G. Caro, I. Mondragon, P. Gañán, "Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes", Carbohydrate Polymers, vol. 84, pp. 96-102, 2011.
[19] D. L. Vander-Hart, R. H. Atalla, "Studies of Microstructure in Native Celluloses Using Solid-state 13C NMR", Macromolecules, vol. 17, pp. 1465-1472, 1984.
[20] T. Oikawa, T. Morino, M. Ameyama, "Production of cellulose from D-Arbitol by Acetobacter xylinum KU-1", Biosci Biotech Biochem, vol.59, pp. 1564-1565, 1995.
[21] S. M. A. S. Keshk, "Bacterial Cellulose Production and its Industrial Applications", J Bioprocess Biotech, vol. 4, pp. 1-10, 2014.
[22] A. Hirai, M. Tsuji, H. Yamamoto, F. Horii, "In Situ Crystallization of Bacterial Cellulose III. Influences of Different Polymeric Additives on the Formation of Microfibrils as Revealed by Transmission Electron Microscopy", Cellulose, vol. 5, pp. 201-213, 1998.
[23] F. Horii, H. Yamamoto, A. Hirai, "Microstructural analysis of microfibrils of bacterial cellulose", Macromol Symp, vol. 120, pp. 197-205. 23, 1997.
[24] I. W. Sutherland, "Microbial polysaccharides from gram negative bacteria", International Dairy Journal, vol. 11, pp. 663-674, 2001.
[25] J. L. Chávez-Pacheco, S. Martínez-Yee, M. Contreras-Zentella, E. Escamilla-Marván, "Celulosa bacteriana en Gluconacetobacter xylinum: biosíntesis y aplicaciones", TIP Rev Esp Cienc Quím Biol, vol. 7, pp. 18-25, 2004.
[26] Y. Yamada, K. Hoshino, T. Ishikawa, "The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter to the generic level", Biosci Biotechnol Biochem, vol. 61, pp. 1244-1251, 1997.
[27] E. J. Vandamme, S. D. Baets, V. Vanbaelen, K. Joris, P. D. Wulf, "Improved production of bacterial cellulose and its application potential", Polymer Degradation Stabilization, vol. 59, pp. 93-99, 1998.
[28] S. M. Mohammad, N. AbdRahman, M. S. Khalil, S. R. Sheikh Abdullah, "An Overview of Biocellulose Production Using Acetobacter xylinum Culture". Advan Biol Res, 8, pp. 307-313, 2014.
[29] I. M. Saxena, R. M. Jr. Brown, M. Fevre, R. A. Geremia, B. Henrissat, "Multidomain architecture of beta-glycosyltransferases: implications for mechanism of action", J Bacteriol, 177, pp. 1419-1424, 1995.
[30] S. Sun, Y. Horikawa, M. Wada, J. Sugiyama, T. Imai, "Site-directed mutagenesis of bacterial cellulose synthase highlights Sulfur-arene interaction as key to catalysis", Carbohydrate Research, vol. 434, pp. 99-106, 2016.
[31] H. C. Wong, A. L. Fear, R. D. Calhoon, G. H. Eichinger, R. Mayer, D. Amikam, M. Benziman, D. H. Gelfand, J. H. Meade, A. W. Emerick, R. Bruner, A. Ben-Bassat, R. Tal, "Genetic organization of the cellulose synthase operon in Acetobacter xylinum", Proc Nati Acad Sci, vol. 87, pp. 8130-8134, 1990.
[32] S. Kimura, H. P. Chen, I. M. Saxena, R. J. Brown, T. Itoh, "Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum". J Bacteriol, vol.183, pp. 5668-5674, 2001.
[33] K. Zaar, "Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum", J Cell Biol, vol. 80, pp. 773-777, 1979.
[34] I. M. Saxena, K. Kudlicka, K. Okuda, R. M. Jr. Brown, "Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization", J Bacteriol, vol. 176, 5735-5752, 1994.
[35] R. Standal, T. G. Iversen, D. H. Coucheron, E. Fjaervik, J. M. Blatny, S. Valla," A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon, J Bacteriol, vol. 176, pp.665-672, 1994.
[36] F. C. Lin, R. M. Jr. Brown, R. R. Jr. Drake, B. E. Haley, "Identification of the uridine 5'-diphosphoglucose (UDPGlc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc", J Biol Chem, vol. 265, pp. 4782-4784, 1990.
[37] F. C. Lin, R. M. Jr. Brown, "Purification of cellulose synthase from Acetobacter xylinum", in Cellulose and wood-chemistry and technology, C. Schuerch, Ed. NewYork: John Wiley and Sons, 1989, pp.473-492.
[38] I. M. Saxena, F. C. Lin, R. M. Jr. Brown, "Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum", Plant Mol Biol, vol. 15, pp. 673-683, 1990.
[39] I. M. Saxena, F. C. Lin, R. M. Jr. Brown, "Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum", Plant Mol Biol, vol. 16, pp. 947-954, 1991.
[40] T. E. Bureau, R. M. Jr. Brown, "In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum", Proc Natl Acad Sci USA, vol. 84, pp. 6985-6989, 1987.
[41] J. B. McManus, Y. Deng, N. Nagachar, T. H. Kao, M. Tien, "AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769", Enzyme and Microbial Technology, vol. 82, pp. 58-65, 2016.
[42] J. Du, V. Vepachedu, S. H. Cho, M. Kumar, B. T. Nixon, "Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution", PLOSONE, vol. 11, pp. 1-24, 2016.
[43] Í. A. N. Donini, D. T. B. De Salvi, F. K. Fukumoto, W. R. Lustri, H. S. Barud, R. Marchetto, Y. Messaddeq, S. J. L. Ribeiro, "Biossíntese e recentes avanços na produção de celulose bacteriana". Eclet Quím, vol. 35, pp. 165-173, 2010.
[44] W. R. Lustri, H. G. O. Barud, H. S. Barud, M. F. S. Peres, J. Gutierrez, A. Tercjak, O. O. J. Batista, J. L. Ribeiro, "Microbial Cellulose-Biosynthesis Mechanisms and Medical Application", Chapter 6, in Cellulose-Fundamental Aspects and Current Trends, M Poletto and HLJ Ornaghi, Eds. Croatia: In Tech, 2015, pp. 133-157.
[45] K. Y. Lee, G. Buldum, A. Mantalaris, A. Bismarck, "More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites", Macromol Biosci, vol. 14, pp. 10-32, 2014.
[46] M. Nogi, H. Yano, "Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry", Advanced Material, vol. 20, pp. 1849-1852, 2008.
[47] D. J. Levinson, T. Glonek, "Microbial Cellulose Contact Lens", US Pat 7832857, 2010.
[48] Z. Shi, S. Zang, F. Jiang, L. Huang, D. Lu, Y. Ma, G. Yang, "In situnano-assembly of bacterial cellulose-polyaniline composites", RSC Adv, vol. 2, pp. 1040-1046, 2012.
[49] E. Trovatti, N. H. C. S. Silva, I. F. Duarte, C. F. Rosado, I. F. Almeida, P. Costa, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, "Biocellulose membranes as supports for dermal release of lidocaine". Biomacromolecules, vol. 12, pp. 4162-4168, 2011.
[50] H. O. Park, Y. B. Bang, H. J. Joung, B. C. Kim, H. R. Kim, "Lactobacillus KCTC 0774BP and Acetobacter KCTC 0773BP for Treatment or Prevention of Obesity and Diabetes Mellitus", US Pat 6808703, 2004.
[51] C. S. R. Freire, S. C. M. Fernandes, A. J. D. Silvestre, C. P. Neto, "Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro–a review", Holzforschung, vol. 67, pp.603-612, 2013.
[52] V. I. Legeza, V. P. Galenko-Yaroshevskii, E. V. Zinověv, B. A. Paramonov, G. S. Kreichman, I. I. Turkovskii, E. S. Gumenyuk, A. G. Karnovich, A. K. Khripunov, "Effects of new wound dressings on healing of the rmalburns of the skin in acute radiation disease", Bull Exp Biol Med, vol. 138, pp. 311-315, 2004.
[53] Y. Z. Wan, L. Hong, S. R. Jia, Y. Huang, Y. Zhu, Y. L. Wang, H. J. Jiang, "Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites", Compos Sci Technol, vol. 66, pp. 1825-1832, 2006.
[54] J. Wu, Y. Zheng, W. Song, J. Luan, X. Wen, Z. Wu, X. Chen, Q. Wang, S. Guo, "In Situ Synthesis of Silver-Nanoparticles /Bacterial Cellulose Composites for Slow-Released Antimicrobial Wound Dressing", Carbohydrate polymer, vol. 102, pp.762-771, 2014.
[55] X. Zhang, Y. Fanga, W. Chena, "Preparation of Silver/Bacterial Cellulose Composite Membrane and Study on Its Antimicrobial Activity", Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 43, pp.907-913, 2013.
[56] C. Y. Zhong, "Method for manufacturing air-filtering bacterial cellulose face mask", CN Pat 200910149665.8, 2011.
[57] M. Zaboroweska, A. Bodin, H. Backdahi, J. Popp, A. Goldstein, P. Gatenholm, "Microporous Bacterial Cellulose as a Potential Scaffold for Bone Regeneration", Acta Biomaterialia, vol. 6, pp. 2540-2547, 2010.
[58] X. Ma, R. M. Wang, F. M. Guan, T. F. Wang, "Artificial dura mater made from bacterial cellulose and polyvinyl alcohol", CN Pat 200710015537.5, 2010.
[59] D Klemm, D Schumann, U Udhardt, S Marsch, Bacterial synthesized cellulose: Artificial blood vessels for microsurgery, Prog Polym Sci, 2001, 26(9), 1561-1603.
[60] D. A. Schumann, J. Wippermann, D. O. Klemm, F. Kramer, D. Koth, H. Kosmehl, T. Wahlers, S. Salehi-Gelani, "Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes", Cellulose, vol. 16, pp. 877-885, 2009.
[61] F. K. Andrade, J. P. Silva, M. Carvalho, E. M. S. Castanheira, R. Soares, M. Gama, "Studies on the hemocompatibility of bacterial cellulose", J Biomed Mater Res A, vol. 98, pp. 554-566, 2011.
[62] Z. Cai, J. Kim, "Preparation and Characterization of Novel Bacterial Cellulose/Gelatin Scaffold for Tissue Regeneration Using Bacterial Cellulose Hydrogel", J Nanotechnol Eng Med, vol. 1, pp. 1-6, 2010.
[63] S. Yamanaka, E. Ono, K. Watanabe, M. Kusakabe, Y. Suzuki, "Hollow Microbial Cellulose, Process for Preparation Thereof, and Artificial Blood Vessel Formed of Said Cellulose". European Pat 0396344, 1990.
[64] J. D. Kakisis, C. D. Liapis, C. Breuer, B. E. Sumpio, "Artificial blood vessel: the Holy Grail of peripheral vascular surgery", J Vasc Surg, vol. 41, pp. 349-354, 2005.
[65] L. R. Mello, L. T. Feltrin, P. T. F. Neto, F. A. P. Ferraz, "Duraplasty with biosynthetic cellulose: An experimental study", J Neurosurg, vol. 86, pp. 143-150, 1997.
[66] C. Xu, X. Ma, S. Chen, M. Tao, L. Yuan, Y. Jing, "Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits", Int J Mol Sci, vol. 15, 10855-10867, 2014.
[67] W. Czaja, A. Krystynowicz, S. Bielecki, R. M. Jr. Brown, "Microbial cellulose-the natural power to heal wounds", Biomaterials, vol. 27, pp. 145-151, 2006.
[68] J. D. Fontana, A. M. de Sousa, C. K. Fontana, I. L. Torriani, J. C. Moreschi, B. J. Gallotti, S. J. de Sousa, G. P. Narcisco, J. A. Bichara, L. F. Farah, "Acetobacter cellulose pellicle as a temporary skin substitute", Appl Biochem Biotechnol, vol. 24-25, pp. 253-264, 1990.
[69] R. C. Mayall, A. C. Mayall, L. C. Mayall, H. C. Rocha, L. C. Marques, "Tratamento das ulceras troficas dos membros com um novo substitute da pele", ReV Bras Cir, vol. 80, pp. 257-283, 1990.
[70] M. D. Pornprom Muangman, M. D. Supaporn Opasanon, R. N. Supaparn Suwanchot, R. N. Orapin Thangthed, "Efficiency of Microbial Cellulose Dressing in Partial-Thickness Burn Wounds", Journal of the American College of Certified Wound Specialists, vol. 3, pp. 16-19, 2011.
Cite This Article
  • APA Style

    Zohra Mohammedi. (2017). Structure, Properties and Medical Advances for Biocellulose Applications: A Review. American Journal of Polymer Science and Technology, 3(5), 89-96. https://doi.org/10.11648/j.ajpst.20170305.12

    Copy | Download

    ACS Style

    Zohra Mohammedi. Structure, Properties and Medical Advances for Biocellulose Applications: A Review. Am. J. Polym. Sci. Technol. 2017, 3(5), 89-96. doi: 10.11648/j.ajpst.20170305.12

    Copy | Download

    AMA Style

    Zohra Mohammedi. Structure, Properties and Medical Advances for Biocellulose Applications: A Review. Am J Polym Sci Technol. 2017;3(5):89-96. doi: 10.11648/j.ajpst.20170305.12

    Copy | Download

  • @article{10.11648/j.ajpst.20170305.12,
      author = {Zohra Mohammedi},
      title = {Structure, Properties and Medical Advances for Biocellulose Applications: A Review},
      journal = {American Journal of Polymer Science and Technology},
      volume = {3},
      number = {5},
      pages = {89-96},
      doi = {10.11648/j.ajpst.20170305.12},
      url = {https://doi.org/10.11648/j.ajpst.20170305.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpst.20170305.12},
      abstract = {Microbial exopolysaccharides (EPS) obtained from microbial sources, became simply available for a broad range of applications, especially for medicine and pharmaceutical industries. One of these EPS bacterial cellulose known as biocellulose (BC). BC is a pure extracellular cellulose, which accumulate outside the cells, produced by several species of microorganisms, like Gluconacetobacter; Achromobacter; Sarcina and Agrobacterium with a great number of applications. It is an organic unbranched polysaccharide, type β-1,4-glucan, composed of glucopyranose residues. Biocellulose is used as artificial skin and occlusive dressings to treat chronic wounds and to heal burns, in microsurgeries as artificial blood vessels, scaffolds in tissue engineering and many other applications. This work represents a review on this remarkably microbial biomaterial and thus an update of a collection of scientific data from original research between 1979 and 2016. The paper started on structural, composition, properties and characterization and biogenesis of this biopolymer, then it gives a synthesis on a variety of biomedical applications.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Structure, Properties and Medical Advances for Biocellulose Applications: A Review
    AU  - Zohra Mohammedi
    Y1  - 2017/12/13
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajpst.20170305.12
    DO  - 10.11648/j.ajpst.20170305.12
    T2  - American Journal of Polymer Science and Technology
    JF  - American Journal of Polymer Science and Technology
    JO  - American Journal of Polymer Science and Technology
    SP  - 89
    EP  - 96
    PB  - Science Publishing Group
    SN  - 2575-5986
    UR  - https://doi.org/10.11648/j.ajpst.20170305.12
    AB  - Microbial exopolysaccharides (EPS) obtained from microbial sources, became simply available for a broad range of applications, especially for medicine and pharmaceutical industries. One of these EPS bacterial cellulose known as biocellulose (BC). BC is a pure extracellular cellulose, which accumulate outside the cells, produced by several species of microorganisms, like Gluconacetobacter; Achromobacter; Sarcina and Agrobacterium with a great number of applications. It is an organic unbranched polysaccharide, type β-1,4-glucan, composed of glucopyranose residues. Biocellulose is used as artificial skin and occlusive dressings to treat chronic wounds and to heal burns, in microsurgeries as artificial blood vessels, scaffolds in tissue engineering and many other applications. This work represents a review on this remarkably microbial biomaterial and thus an update of a collection of scientific data from original research between 1979 and 2016. The paper started on structural, composition, properties and characterization and biogenesis of this biopolymer, then it gives a synthesis on a variety of biomedical applications.
    VL  - 3
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Biology, Faculty of Natural Sciences and Life, Mustapha Stambouli University, Mascara, Algeria

  • Sections