Bioactivity and Therapeutic Potential of Plant Extracts in Cancer and Infectious Diseases
Journal of Diseases and Medicinal Plants
Volume 1, Issue 1, April 2015, Pages: 8-18
Received: Apr. 20, 2015; Accepted: Apr. 24, 2015; Published: Apr. 30, 2015
Views 4711      Downloads 279
Authors
Simeon Pierre Chegaing Fodouop, Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundere, Ngaoundere, Cameroon
Richard Tagne Simo, Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundere, Ngaoundere, Cameroon
Jeremie Mbo Amvene, Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundere, Ngaoundere, Cameroon
Emmanuel Talla, Department of Chemistry, Faculty of Sciences, University of Ngaoundere, Ngaoundere, Cameroon
Paul Faustin Seke Etet, Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
Paul Takam, Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Verona, Italy
Armel Herve Nwabo Kamdje, Department of Biomedical Sciences, Faculty of Sciences, University of Ngaoundere, Ngaoundere, Cameroon
Jean-Marc Muller, University of Poitiers, Faculty of Science, Poitiers, France
Article Tools
Follow on us
Abstract
Medicinal plants have been used particularly in resource poor communities of the African continent as an alternative for the treatment of infectious diseases. Traditional medicine plays a critical role in treatment of chronic debilitating and life threatening conditions and infectious diseases. Cancer is one such condition whose therapeutic intervention is commonly through inexpensive traditional herbal remedies. Increasingly industrialised societies are developing drugs and chemotherapeutics from these traditional herbal plants. Plant biogeography determines the abundance and availability of medicinal plants which in turn determine their use by africango communities. Recent findings of bioactivity and therapeutic potential of plant extracts in cancer and infectious diseases are herein summarized and discussed.
Keywords
Antioxidants, Chemotherapy, Medicinal Plants, Phytochemicals, Prophylaxis, Herbs, Natural Products, Cancer, Infectious Diseases
To cite this article
Simeon Pierre Chegaing Fodouop, Richard Tagne Simo, Jeremie Mbo Amvene, Emmanuel Talla, Paul Faustin Seke Etet, Paul Takam, Armel Herve Nwabo Kamdje, Jean-Marc Muller, Bioactivity and Therapeutic Potential of Plant Extracts in Cancer and Infectious Diseases, Journal of Diseases and Medicinal Plants. Vol. 1, No. 1, 2015, pp. 8-18. doi: 10.11648/j.jdmp.20150101.12
References
[1]
T. SIBANDA, A.I. OKOH. In vitro evaluation of the interactions between acetone extracts of Garcinia kola seeds and some antibiotics; Afr. J. Biotech., 7(2008b), pp. 1672-1678.
[2]
D.O. Ochwang'i, C.N. Kimwele, J.A. Oduma, P.K. Gathumbi, J. M. Mbaria, S.G. Kiama. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J Ethnopharmacol., 151(2014), pp. 1040-1055.
[3]
T. Rabe, J. van Staden. Antibacterial activity of South African plants used for medicinal purposes. J Ethnopharmacol., 56(1997), pp. 81-7.
[4]
P. Pillay, V.J. Maharaj, P.J. Smith. Investigating South African plants as a source of new antimalarial drugs. Journal of Ethnopharmacology. 119(2008), pp. 438-454.
[5]
H. Lai, N.P. Singh. Oral artemisinin prevents and delays the development of 7, 12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett., 231(2006), pp. 43-48.
[6]
J. Sun, Y.F. Chu, X.Z. Wu, R.H. Liu. Antioxidant and anti-proliferative activities of fruits. Journal ofAgricultural and Food Chemistry. 50 (2002), pp. 7449-7454.
[7]
C. De Martel, J. Ferlay, S. Franceschi, J. Vignat, F. Bray, D. Forman, M. Plummer.Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13 (2012), pp. 607–615.
[8]
J.V. Remais, G. Zeng, G. Li, L. Tian, and M. M. Engelgau. Convergence of non-communicable and infectious diseases in low- and middle-income countries. International Journal of Epidemiology 42(2012), pp. 221–227.
[9]
A. Jemal, F. Bray, D. Forman, M. O’Brien, J. Ferlay, M. Center, D. M. Parkin,D. M. Parkin. The global health burden of infection associated cancers in the year 2002. Int. J. Cancer 118(2006), pp.3030–3044.
[10]
A. Rahbar, A. Orrego, I. Peredo, M. Dzabic, N. Wolmer-Solberg, K. Strååt, G. Stragliotto, C. Söderberg-Nauclér. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival. J Clin Virol. 57(2013), pp.36-42.
[11]
C. Söderberg-Nauclér, A. Rahbar, G. Stragliotto. Survival in Patients with Glioblastoma Receiving Valganciclovir. N Engl J Med. 369(2013), pp. 985-986.
[12]
N. E. Mueller. Cancers Caused by Infections Unequal Burdens. Cancer Epidemiol Biomarkers PrevMarch 12(2003), 237s.
[13]
V. Samaras, P. I. Rafailidis, E. G. Mourtzoukou, G. Peppas, M. E. Falagas. Chronic bacterial and parasitic infections and cancer: a review. J Infect Dev Ctries. 4(2010), pp. 267-281.
[14]
C. Y. Wu, K. N. Kuo, M. S. Wu, Y. J. Chen, C. B. Wang, J. T. Lin .(2009). Early Helicobactter pylori eradication decreases risk of gastric cancer in patient with peptic ulcer disease.3 Gastroenterology. 137(2009), pp. 1641-8.
[15]
D. Saslow, P. E. Castle, J. T. Cox, D. D. Davey, M. H. Einstein, D. G. Ferris,S. J. Goldie et al. American Cancer Society Guideline for Human Papillomavirus (HPV) vaccine use to prevent cervical cancer and its precursors. CA Cancer J Clin. 57(2007), pp. 7–28.
[16]
M-H. Chang, T. H-H. Chen, H-M. Hsu, T-C. Wu, M-S. Kong, D-C. Liang, Y-H Ni, C-J. Chen, D-S. Chen. Prevention of Hepatocellular Carcinoma by Universal Vaccination against Hepatitis B Virus: The Effect and Problems. Clin Cancer Res. 11(2005), pp.7953-7.
[17]
Z. Jiang, S. Jhunjhunwala, J. Liu, P. M. Haverty, M. I. Kennemer, Y. Guan, W. Lee, P. Carnevali et al. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res. 22(2012), pp. 593–601.
[18]
P. Paterlini-Bréchot, K. Saigo, Y. Murakami, M. Chami, D. Gozuacik, C. Mugnier, D. Lagorce and C. Bréchot. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 22 (2003), pp. 3911–3916.
[19]
M. Campitelli, E, Jeannot, M. Peter, E. Lappartient, S. Saada, et al. Human Papillomavirus Mutational Insertion: Specific Marker of Circulating Tumor DNA in Cervical Cancer Patients. PLoS ONE 7(2012): e43393. doi:10.1371/journal.pone.0043393
[20]
U. Dutta, P.K. Garg, R. Kumar, R.K. Tandon. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol. 95 (2000), pp.784-7.
[21]
A. I. Prieto, F. Ramos-Morales and J. Casadesús. Bile-induced DNA damage in Salmonella enterica. Genetics 168 (2004), pp.1787-1794.
[22]
E. Haghjoo, J.E. Galán. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc Natl Acad Sci U S A. 101(2004), pp. 4614-9.
[23]
W. Heywood, B. Henderson, and S. P. Nair. Cytolethal distending toxin: creating a gap in the cell cycle. J. Med. Microbiol. 54(2005), pp.207-216.
[24]
P. A. Havre, J. Yuan, L. Hedrick L, et al. p53 inactivation by HPV 16 E6 results in increased mutagenesis in human cells. Cancer Research, 55(1995): 4420-4.
[25]
S. Henderson, D. Huen, M Rowe, C. Dawson, G. Johnson, A. Rickinson. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc. Natl. Acad. Sci. 90(1993), pp. 8479–8483.
[26]
M. G. Mohi and B.G. Neel. The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev. 17(2012), pp. 23-30.
[27]
H. Higashi, R Tsutsumi, S. Muto, T. Sugiyama, T. Azuma, M. Asaka, M. Hatakeyama. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 295(2002), pp. 683-6.
[28]
A. Mantovani. Cancer: inflamming metastasis. Nature 457(2009), pp. 36–7.
[29]
M. P. Rosin, S. S. El-Din, J. A. Ward, W.A Anwar. Involvement of inflammatory reactions and elevated cell proliferation in the development of bladder cancer in schistosomiasis patients. Mutat. Res.305 (1994), pp. 283–292.
[30]
H. Wiseman and B. Halliwell. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer Biochem. J. 313 (1996), pp. 17–29.
[31]
Acacia Lamb and Lin-Feng Chen. Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. Journal of Cellular Biochemistry 114 (2013), pp. 491–497.
[32]
M. Roulis, M. Armaka, M. Manoloukos, M. Apostolaki, G. Kollias. Intestinal epithelial cells as producers but not targets of chronic TNF suffice to cause murine Crohn-like pathology. Proc Natl Acad Sci U S A. 108(2011), pp. 5396-401.
[33]
Y. Yu, R. Gong, Y. Mu, Y. Chen, C. Zhu, Z. Sun, M. Chen, Y. Liu, Y. Zhu, J. Wu. Hepatitis B virus induces a novel inflammation network involving three inflammatory factors, IL-29, IL-8, and cyclooxygenase-2. J Immunol 187(2011), pp. 4844-60.
[34]
M. Lamkanfi, T-D. Kanneganti, L. Franchi and G. Núñez. Caspase-1 inflammasomes in infection and inflammation. Journal of Leukocyte Biology 82 (2007), pp. 2 220-225.
[35]
A. A. Negash, H. J. Ramos, N. Crochet, D. T. Lau, B. Doehle, N. Papic, D. A. Delker et al. IL-1β Production through the NLRP3 Inflammasome by Hepatic Macrophages Links Hepatitis C Virus Infection with Liver Inflammation and Disease. PLOS Pathogens 9(2013),| e1003330
[36]
V. Singh, N. Kerur, V. Bottero, S. Dutta, S Chakraborty, M. Ansari, N. Paudel, L. Chikoti, B. Chandran. Kaposi's sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J Virol. 87(2013), pp.4417-31.
[37]
N. Kerur, M. V. Veettil, N. Sharma-Walia, V. Bottero, S. Sadagopan, P. Otageri and Bala Chandran. IFI16 Acts as a Nuclear Pathogen Sensor to Induce the Inflammasome in Response to Kaposi Sarcoma-Associated Herpesvirus Infection. Cell Host & Microbe 9 (2011), pp. 363–375.
[38]
S. Huang, J. Y. Li, J. Wu, L. Meng, C.C. Shou. Mycoplasma infections and different human carcinomas. World J Gastroenterol 7(2011), pp. 266–269.
[39]
C. Urbanek, S. Goodison, M. Chang, S. Porvasnik, N. Sakamoto et al. Detection of antibodies directed at M. hyorhinis p37 in the serum of men with newly diagnosed prostate cancer. BMC Cancer 11 (2011): 233.
[40]
Y. Xu, H. Li, W. Chen, X. Yao, Y. Xing, et al. Mycoplasma hyorhinis Activates the NLRP3 Inflammasome and Promotes Migration and Invasion of Gastric Cancer Cells. PLoS ONE 8(2011): e77955. doi:10.1371/journal.pone.0077955.
[41]
L. M. Hix, J. Karavitis, M. W. Khan, Y.H. Shi, K Khazaie, M. Zhang. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells. J Biol Chem. 288 (2013), pp. 1676-88.
[42]
J.A. DiDonato, F. Mercurio, M. Karin. NF-κB and the link between inflammation and cancer. Immunol Rev. 246 (2012), pp. 379-400.
[43]
F. E. Wagner and Á. R. Nebreda. Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews Cancer 9 (2009), pp. 537-549.
[44]
C.Y. Fang, C.H. Lee, C.C Wu, Y. T. Chang, S. L. Yu, S. P. Chou, P.T. Huang, C.L. Chen, J. W. Hou, Y. Chang, C. H. Tsai, K. Takada, J.Y. Chen. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer. 124(2009), pp. 2016-25.
[45]
H. Yu, D. Pardoll and R. Jove. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer 9 (2009), pp. 798-809.
[46]
G. Niu, K. L. Wright, M. Huang, L. Song, E. Haura, J. Turkson, S. Zhang et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21 (2002), pp. 2000- 2008.
[47]
T-X. Xie, N. Zhang, W. Gong, S. Huang. Constitutive NF-kappaB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncol Rep. 23(20010), pp.725–732.
[48]
B. B. Aggarwal. Nuclear factor-κB:The enemy within. Cancer Cell, 6(2004), pp. 3.
[49]
Ben-Neriah Y,M. Karin. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol. 12 (2011), pp. 715-723.
[50]
S. Maeda, H. Yoshida, K. Ogura, Y. Mitsuno, Y. Hirata, Y. Yamaji, M. Akanuma, Y. Shiratori, M. Omata. H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology, 119(2000), pp. 97-108.
[51]
S. A. Keller, E.J. Schattner and E. Cesarman. Inhibition of NF-κB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 96 (2000), pp. 2537–254.
[52]
N. Benvenisty, D.M. Ornitz, G.L. Bennett, et al. Brain tumours and lymphomas in transgenic mice that carry HTLV-I LTR/c-myc and Ig/tax genes. Oncogene. 7(1992), pp. 2399-2405.
[53]
R. Grassmann, S. Berchtold, I. Radant, M. Alt, B. Fleckenstein, J. G. Sodroski, W. A. Haseltine and U. Ramstedt. Role of human T-cell leukemia virus type 1 X region proteins in immortalization of primary human lymphocytes in culture. J. Virol. 66 (1992), pp. 74570-4575.
[54]
S-C. Sun and S. Yamaoka. Activation of NF- B by HTLV-I and Implications for cell transformation Oncogene 24(2005), pp. 5952–5964.
[55]
T. Portis, J.C. Harding, L. Ratner. The contribution of NF-kappa B activity to spontaneous proliferation and resistance to apoptosis in human T-cell leukemia virus type 1 Tax-induced tumors. Blood. 98(2001), pp.1200-1208.
[56]
J. Teng, X. Wang, Z. Xu and N. Tang. HBx-dependent activation of twist mediates STAT3 control of epithelium-mesenchymal transition of liver cells. Journal of Cellular Biochemistry. 114, (2013), pp. 1097–1104.
[57]
S. Shukla, G. Shishodia, S. Mahata, S. Hedau, A. Pandey, S. Bhambhani, S. Batra, S. F. Basir et al. Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Molecular Cancer 9(2010), pp. 282.
[58]
S. A. Punjabi, P. A. Carroll, L. Chen, and M. Lagunoff. Persistent Activation of STAT3 by Latent Kaposi’s Sarcoma-Associated Herpesvirus Infection of Endothelial Cells.J Virol. 81(2007), pp. 2449–2458.
[59]
G. Waris, J. Turkson, T. Hassanein, A. Siddiqui. Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. J Virol. 79(2005), pp. 1569-80.
[60]
T. Lin and K. Bost. STAT3 activation in macrophages following infection with Salmonella. Biochem Biophys Res Commun. 321 (2004), pp. 828–834.
[61]
C. A. King. Kaposi's Sarcoma-Associated Herpesvirus Kaposin B induces unique mono-phosphorylation of STAT3 at serine 727 and MK2-mediated inactivation of the STAT3 transcriptional repressor, TRIM28. J. Virol. 87(2013), pp. 15 8779-8791.
[62]
Cowan, M. (1999), Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12, 564–582.
[63]
Quiroga, E., Sampietro, A. & Vattuone, A. (2001). Screening antifungal activities of selected medicinal plants, Journal of Ethnopharmacology, 74, 89-96.
[64]
Alanis, L. (2005) Resistance to antibiotics: are we in the post-antibiotic era?. Archieves in Medical Research, 36, 697–705.
[65]
Alviano, D. & Alviano, A. (2009). Plant extracts: search for new alternative to treat microbial diseases. Current Pharmaceutical Biotechnology, 10, 106-121.
[66]
Ficker, E., Arnason, T., Vindas, S., Alvarez, P., Akpagana, K., & Gbeassor, M. (2005). Inhibition of human pathogenic fungi by ethnobotanically selescted plant extracts. Mycoses, 46, 29–37.
[67]
Groll, A., Piscitelli, S., & Walsh, T. (1998). Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Advances in Pharmacology, 44, 343–500.
[68]
Di Domenico, B. (1999). Novel antifungal drugs. Current Opinion in Microbiology, 2, 509- 515.
[69]
Bartoli J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). New azole antifungals. 3. Synthesis and antifungal activity of 3-substituted-4(3H)-quinazolinone derivatives of 3-amino-2-aryl-1-azolyl-2-butanol. Journal of Medicinal Chemistry, 41, 1869-1882.
[70]
Barker, J. (2006). Antibacterial drug discovery and structure-based design. Drug Discovery Today, 11, 391-404
[71]
Ghosh, A., Das, B., Roy, A., Mandal, B. & Chandra, G. (2008). Antibacterial activity of some medicinal plant extracts. Journal of Natural Medicines, 62, 259–262.
[72]
Eloff, J. (1998). Which extractant should be used for the screening and isolation of antimicrobial components from plants?, Journal of Ethnopharmacology, 60, 1–8.
[73]
Van Etten, H., Mansfield, W., Bailey, J. & Farmer, E. (1994). Two classes of plant antibiotics: phytoalexins versus phytoanticipins. Plant Cell, 6, 1191-1192.
[74]
Grayer, R. & Harborne, J. (1994). A survey of antifungal compounds from plants, 1982-1993. Phytochemistry, 37, 19-42.
[75]
Osbourn, A. (1996). Preformed antimicrobial compounds and plant defense against fungal attack. The Plant Cell, 8, 1821-1831.
[76]
Schelz, Z., Molnar, J., & Hohmann, J. (2006). Antimicrobial and antiplasmid activities of essential oils, Fitoterapia, 77(4):279-285.
[77]
Chakrabarty, M. (2003). Microorganisms and cancer: quest for therapy. Journal of Bacteriology, 185 (9), 2683-2686.
[78]
Alviano, D. & Alviano, A. (2009). Plant extracts: search for new alternative to treat microbial diseases. Current Pharmaceutical Biotechnology, 10, 106-121.
[79]
Ushimaru, P., da Silva, M., Di Stasi, L., Barbosa, L. & Junior, A. (2007). Antibacterial activity of medicinal plant extracts, Brazilian Journal of Microbiology, 38:717-719.
[80]
Nascimento F., Gilsen, J., Paulo, F. & Giuliana, S. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology, 31, 247-256.
[81]
Srinivasan, D., Sangeetha, N., Suresh, T. & Perumalsamy, P. (2001). Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. Journal of Ethnopharmacology, 74, 217-220.
[82]
Essawi, T. & Srour, M. (2000). Screening of some Palestinian medicinal plants for antibacterial activity, Journal of Ethnopharmacology, 70, 343-349.
[83]
Talib, W. & Mahasneh, A. (2010b). Antimicrobial, Cytotoxicity and Phytochemical Screening of Jordanian Plants Used in Traditional Medicine. Molecules, 15, 1811-1824.
[84]
Alexander, B. & Perfect, J. (1997). Antifungal resistance trends toward the year 2000, implication for therapy and new approaches. Drugs, 54, 657-678.
[85]
Madigan, T., Martinko, J., & Parker, J. (2006). Biology of Microorganisms (eleventh Edition), Pearson, USA.
[86]
Motsei, M., Lindsey, J., van Staden & Jager.,A. (2003). Screening of Traditionally used South African Plants for Antifungal Activity against Candida albicans. Journal of Ethnopharmacology, (86), 235-241.
[87]
Barbour, K., Al Sharif, M., Sagherian V., Habre, A., Talhouk, R. & Talhouk, S. (2004). Screening of selected indigenous plants of Lebanon for antimicrobial activity. Journal of Ethnopharmacology, 93, 1-7.
[88]
Pareke, J. & Chanda, S. (2007). In vitro screening of antibacterial activity of aqueous and alcoholic extracts of various Indian plant species against selected pathogens from Enterobacteriaceae. African Journal of Microbiology Research, 6, 92–99.
[89]
Mahasneh, A. (2002). Screening of some indigenous Qatari medicinal plants for antimicrobial activity. Phytotherapy Research, 16(8), 751-3.
[90]
Zampini, I., Cuello, S., Alberto, M., Ordoñez, R., Almeida, R., Solorzano, E. & Isla, M. (2009). Antimicrobial activity of selected plant species from "the Argentine Puna" against sensitive and multi-resistant bacteria. Journal of Ethnopharmacology, 124(3):499-505.
[91]
Mothana, R., Lindequist, U., Gruenert, R., & Bednarski, P. (2009). Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra. BMC Complementary and Alternative Medicine, 9, record number 7.
[92]
Mahasneh, A. & El-Oqlah, A. (1999). Antimicrobial activity of extracts of herbal plants used in the traditional medicine in Jordan. Journal of Ethnopharmacology, 64, 271– 276.
[93]
Al-Bakri, A. & Afifi, F. (2007). Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. Journal of Microbiological Methods, 68 (1), 19-25.
[94]
AL-Hussaini, R. & Mahasneh A. (2009). Microbial growth and quorum sensing antagonist activities of herbal plant extracts. Molecules, 14, 3425–3435.
[95]
Khalil, A., Dababneh, B., & Al-Gabbiesh, A. (2009). Antimicrobial activity against pathogenic microorganisms by extracts from herbal Jordanian plants. Journal of Food, Agriculture and Environment, 7 (2), 103-106.
[96]
Al-Momani, W., Abu-Basha, E., Janakat, Nicholas, R. & Ayling (2007). In vitro antimycoplasmal activity of six Jordanian medicinal plants against three Mycoplasma species. Tropical Animal Health and Production, 39, (7), 515-519.
[97]
Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. (4th Edn), Oxford University Press, Oxford, USA.
[98]
Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72: 637S-646S.
[99]
Feher J, Csomos G, Vereckei A (1987) Free radical reactions in medicine. Springer-Verlag, Berlin-Heidelberg, USA 40-43.
[100]
de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP (1999) Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 26: 202-226.
[101]
Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272: 20313-20316.
[102]
Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324 : 1-18.
[103]
Morabito MA, Sheng M, Tsai LH (2004) Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci 24: 865-876.
[104]
Benderitter M, Maupoil V, Vergely C, Dalloz F, Briot F, et al. (1998) Studies by electron paramagnetic resonance of the importance of iron in the hydroxyl scavenging properties of ascorbic acid in plasma: effects of iron chelators. Fundam Clin Pharmacol 12: 510-516.
[105]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 7 : 44-84.
[106]
Powell JM, McCrory DF, Jackson-Smith DB, Saam H (2005) Manure collection and distribution on Wisconsin dairy farms. J Environ Qual 34: 2036-2044.
[107]
Cerutti PA (1994) Oxy-radicals and cancer. Lancet 344: 862-863.
[108]
Cook PLM, Wenzhöfer F, Rysgaard S, Galaktionov OS, Meysman FJR, et al. (2006)Quantification of denitrification in permeable sediments: Insights from a two dimensional simulation analysis and experimental data. Limnol Oceanogr Methods 4: 294-307.
[109]
Cook A, Blaustein M, Spinazzola J, van der Kolk B (2003) Complex trauma in children and adolescents. National Child Traumatic Stress Network, Complex Trauma Taskforce.
[110]
Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420: 860-867.
[111]
Vickers A (2002) Botanical medicines for the treatment of cancer: rationale, overview of current data, and methodological considerations for phase I and II trials. Cancer Invest 20: 1069-1079.
[112]
Bonham M, Arnold H, Montgomery B, Nelson PS (2002) Molecular effects of the herbal compound PC-SPES: identification of activity pathways in prostate carcinoma. Cancer Res 62: 3920-3924.
[113]
Hu H, Ahn NS, Yang X, Lee YS, Kang KS (2002) Ganoderma lucidum extract induces cell cycle arrest and apoptosis in MCF-7 human breast cancer cell. Int J Cancer 102: 250-253.
[114]
El-Shemy HA, Aboul-Enein AM, Aboul-Enein MI, Issa SI, Fujita K (2003) The effect of willow leaf extracts on human leukemic cells in vitro. J Biochem Mol Biol 36: 387-389.
[115]
Kao ST, Yeh CC, Hsieh CC, Yang MD, Lee MR, et al. (2001) The Chinese medicine Bu-Zhong-Yi-Qi-Tang inhibited proliferation of hepatoma cell lines by inducing apoptosis via G0/G1 arrest. Life Sci 69: 1485-1496.
[116]
Meyers KJ, Watkins CB, Pritts MP, Liu RH (2003) Antioxidant and antiproliferative activities of strawberries. J Agric Food Chem 51: 6887-6892.
[117]
Yano H, Mizoguchi A, Fukuda K, Haramaki M, Ogasawara S, et al. (1994) The herbal medicine sho-saiko-to inhibits proliferation of cancer cell lines by inducing apoptosis and arrest at the G0/G1 phase. Cancer Res 54: 448-454.
[118]
Wang X, Wei L, Ouyang JP, Muller S, Gentils M, et al. (2001) Effects of an angelica extract on human erythrocyte aggregation, deformation and osmotic fragility. Clin Hemorheol Microcirc 24: 201-205.
[119]
Xie F, Li X, Sun K, Chu Y, Cao H, et al. (2001) An experimental study on drugs for improving blood circulation and removing blood stasis in treating mild chronic hepatic damage. J Tradit Chin Med 21: 225-231.
[120]
Poma A, Miranda M, Spanò L (1998) Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin. Melanoma Res 8: 465-467.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186