International Journal of Applied Mathematics and Theoretical Physics

| Peer-Reviewed |

Correlation Factor Taking into Account Spherical Harmonics Through Hypergeometric Functions to Calculate Energies of Li-Like Ions

Received: 06 July 2020    Accepted: 14 July 2020    Published: 28 July 2020
Views:       Downloads:

Share This Article

Abstract

Calculations of the energy levels of atoms and ions with Z ≤ 10 are carried out in this paper using a new wave function including a new method to calculate the correlation factor taking into account spherical harmonics through hypergeometric functions to calculate (1s22s) 2Se, (1sns2) 2Se, (1s2sns) 2Se and (1s2snp) 2PO states. The calculations concern the total energy, kinetic energy, Coulomb interaction between the atomic nucleus and the three electrons and the Coulomb interaction between electrons. The results that we have obtained confirm that a relatively theoretical procedure could be used for adequate calculations and understanding of electron correlation effects in doubly excited three- electron states. These results are in compliance with some experimental and theoretical data.

DOI 10.11648/j.ijamtp.20200602.13
Published in International Journal of Applied Mathematics and Theoretical Physics (Volume 6, Issue 2, June 2020)
Page(s) 26-34
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Wave Function Correlated, Spherical Harmonics, Excited States, Correlation Factor

References
[1] Ermolaev M., J. Phys. B 17, 1069 (1984).
[2] Fischer C. F., Comput. Phys. Commun. 64, 369 (1991).
[3] Bronk T., Reading J. F. and Ford A. L., J. Phys. B 31, 2477 (1998).
[4] Godunov A. L., Ivanov P. B., Shipakov V. A., Moretto-Capelle P., Bordenave-Montesquieu D. and Bordenave-Montesquieu A., J. Phys. B 33, 971 (2000).
[5] Kuyatt C. E., Simpson J. A. and Mielczarek S. R. Phys. Rev. 138, A385 (1965).
[6] Fano U. and Cooper J. M., Rev. Mod. Phys. 40, 441 (1968).
[7] Skogvall B., Chesnel J.-Y., Frémont F., Lecler D., Husson X., Lepoutre A., Hennecart D., Grandin J.-P, Sulik B., Salin A. and Stolterfoht N., Phys. Rev. A 51, R4321 (1995).
[8] Diehl S., Cubaynes D., Wuilleumier F. J., Bizau J.-M., Journel L., Kennedy E. T., Blancard C., VoKy L., Faucher P., Hibbert A., Berrah N., Morgan T. J., BozekJ., and Schlachter A. S., Phys. Rev. Lett. 79, 1241 (1997).
[9] Diehl S., Cubaynes D., Zhou H. S., VoKy L., Wuilleumier F. J., Kennedy E. T., Bizau J.- M., Manson S. T., Blancard C., Berrah N. +and Bozek J., J. Phys. B 33, L487 (2000).
[10] Tanis J. A., Chesnel J.-Y., Frémont F., Hennecart D., Husson X., Cassimi A., Grandin J. P., Skogvall B., Sulik B., Bremer J.-H. and Stolterfoht N., Phys. Rev. Lett. 83, 1131 (1999).
[11] Chesnel J.-Y., Tanis J. A., Sulik B., Skogvall B., Rangama J., Frémont F., Bremer J.-H., Cassimi A., Hennecart D., Hoffmann V., Husson X., Landers A. L. and Stolterfoht N., Photonic, Electronic and Atomic Collisions (XXII ICPEAC) Proceedings ed. J Burgdorfer, J Cohen, S Datz, and C Vane, pp 699-707 (2002).
[12] R. Uptal and B. Talukdar, Phys. Scr. 59, 133 (1999).
[13] T. J. McIlrath, T. B. Lucatorto, and R. P. Madden, Phys. Rev. Lett. 25, 1537 (1970).
[14] A. K. Bhatia, Phys. Rev. A 18, 2523 (1978).
[15] B. F. David and K. T. Chung, Phys. Rev. A 39, 3942 (1989).
[16] Thakkar, A. J., Koga, T., Tanabe, T. and Teruya, H., Chem. Phys. Lett., 366, p. 95–99, (2002).
[17] Ho Y. K., Intern. J. of Quant. Chem., 10, pp. 1077 – 1082, (1981).
[18] Eckart, C., Phys. Rev., 36, 878, (1930).
[19] Guillemin Jr., V. and Zener, C., Z. Phys., 61, 199, (1930).
[20] Wilson Jr. E. B., J. Chem. Phys. 1, 210, (1933).
[21] James, H. M., and Coolidge, A. S., Phys. Rev., 47, 700, (1935).
[22] James, H. M., and Coolidge, A. S., Phys. Rev., 49, 688, (1936).
[23] Weiss, A. W., Phys. Rev., 122, 1826, (1961).
[24] Muszynska, J., Papierowska, D. and Woznicki, W., Chem. Phys. Lett., 76, 136, (1980).
[25] King, F. W. and Shoup, V., Phys. Rev. A., 33, 2940, (1986).
[26] King, F. W., Phys. Rev. A., 40, 1735, (1989).
[27] King, F. W. and Bergsbaken, M. P., J. Chem. Phys., 93, 2570, (1990).
[28] McKenzie, D. K. and Drake, G. W. F., Phys. Rev. A., 44, R6973, (1991).
[29] Luchow, A. and Kleindienst, H., Int. J. Quantum Chem., 51, 211, (1994).
[30] Yan, Z. C. and Drake, G. W. F., Phys. Rev. A 52, 3711, (1995).
[31] Yan, Z. C., Tambasco, M. and Drake, G. W. F., Phys. Rev. A., 57, 1652, (1998).
[32] Larsson, S., Phys. Rev. 169, 49 (1968).
[33] Varshalovich, D. A., et al.,. Quantum Theory of Angular Momentum. Scientific Publishing Co. Ltd. (1988).
[34] Youssou Gning, et al.. Radiation Physics and Chemistry 106, 1–6 (2015).
[35] Samarskogo, A.. Edition Science, Moscow, 281 p. (1974).
[36] J. F. Perkins, Phys. Rev. A 13, 915 (1976).
[37] F. W. King, Phys. Rev. A 38, 6017 (1988).
[38] F. W. King, Phys. Rev. A 40, 1735 (1989).
[39] F. Arias de Saavedra, I. Porras, E. Buendia, F. J. Galvez, J. Phys. B 28, 3123 (1995).
[40] S. Erkoç and H. J. F. Jansen, Phys. Rev. A 59, 2490 (1997).
[41] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 52, 3711 (1995).
[42] K. T. Chung, Phys. Rev. A 44, 5421 (1991); 45, 7766 (1992). K. T. Chung and X.-W. Zhu, Phys. Scr. 48, 292 (1993).
[43] J. Pipin and D. M. Bishop, Phys. Rev. A 45, 2736 (1992).
[44] M. Tong, P. Jonsson, and C. F. Fischer, Phys. Scr. 48, 446 (1993).
[45] G. Pestka and W. Woznicki, Chem. Phys. Lett. 255, 281 (1996).
[46] I. Sakho. Chinese journal of physics vol. 48, no. 5 (2010).
Author Information
  • Department of Physics, Atoms Laser Laboratory, University Cheikh Anta Diop, Dakar, Senegal

  • Department of Physics, Atoms Laser Laboratory, University Cheikh Anta Diop, Dakar, Senegal

  • Department of Physics, Atoms Laser Laboratory, University Cheikh Anta Diop, Dakar, Senegal

Cite This Article
  • APA Style

    Boubacar Sow, Malick Sow, Ahmadou Wagué. (2020). Correlation Factor Taking into Account Spherical Harmonics Through Hypergeometric Functions to Calculate Energies of Li-Like Ions. International Journal of Applied Mathematics and Theoretical Physics, 6(2), 26-34. https://doi.org/10.11648/j.ijamtp.20200602.13

    Copy | Download

    ACS Style

    Boubacar Sow; Malick Sow; Ahmadou Wagué. Correlation Factor Taking into Account Spherical Harmonics Through Hypergeometric Functions to Calculate Energies of Li-Like Ions. Int. J. Appl. Math. Theor. Phys. 2020, 6(2), 26-34. doi: 10.11648/j.ijamtp.20200602.13

    Copy | Download

    AMA Style

    Boubacar Sow, Malick Sow, Ahmadou Wagué. Correlation Factor Taking into Account Spherical Harmonics Through Hypergeometric Functions to Calculate Energies of Li-Like Ions. Int J Appl Math Theor Phys. 2020;6(2):26-34. doi: 10.11648/j.ijamtp.20200602.13

    Copy | Download

  • @article{10.11648/j.ijamtp.20200602.13,
      author = {Boubacar Sow and Malick Sow and Ahmadou Wagué},
      title = {Correlation Factor Taking into Account Spherical Harmonics Through Hypergeometric Functions to Calculate Energies of Li-Like Ions},
      journal = {International Journal of Applied Mathematics and Theoretical Physics},
      volume = {6},
      number = {2},
      pages = {26-34},
      doi = {10.11648/j.ijamtp.20200602.13},
      url = {https://doi.org/10.11648/j.ijamtp.20200602.13},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ijamtp.20200602.13},
      abstract = {Calculations of the energy levels of atoms and ions with Z ≤ 10 are carried out in this paper using a new wave function including a new method to calculate the correlation factor taking into account spherical harmonics through hypergeometric functions to calculate (1s22s) 2Se, (1sns2) 2Se, (1s2sns) 2Se and (1s2snp) 2PO states. The calculations concern the total energy, kinetic energy, Coulomb interaction between the atomic nucleus and the three electrons and the Coulomb interaction between electrons. The results that we have obtained confirm that a relatively theoretical procedure could be used for adequate calculations and understanding of electron correlation effects in doubly excited three- electron states. These results are in compliance with some experimental and theoretical data.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Correlation Factor Taking into Account Spherical Harmonics Through Hypergeometric Functions to Calculate Energies of Li-Like Ions
    AU  - Boubacar Sow
    AU  - Malick Sow
    AU  - Ahmadou Wagué
    Y1  - 2020/07/28
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ijamtp.20200602.13
    DO  - 10.11648/j.ijamtp.20200602.13
    T2  - International Journal of Applied Mathematics and Theoretical Physics
    JF  - International Journal of Applied Mathematics and Theoretical Physics
    JO  - International Journal of Applied Mathematics and Theoretical Physics
    SP  - 26
    EP  - 34
    PB  - Science Publishing Group
    SN  - 2575-5927
    UR  - https://doi.org/10.11648/j.ijamtp.20200602.13
    AB  - Calculations of the energy levels of atoms and ions with Z ≤ 10 are carried out in this paper using a new wave function including a new method to calculate the correlation factor taking into account spherical harmonics through hypergeometric functions to calculate (1s22s) 2Se, (1sns2) 2Se, (1s2sns) 2Se and (1s2snp) 2PO states. The calculations concern the total energy, kinetic energy, Coulomb interaction between the atomic nucleus and the three electrons and the Coulomb interaction between electrons. The results that we have obtained confirm that a relatively theoretical procedure could be used for adequate calculations and understanding of electron correlation effects in doubly excited three- electron states. These results are in compliance with some experimental and theoretical data.
    VL  - 6
    IS  - 2
    ER  - 

    Copy | Download

  • Sections