International Journal of Applied Mathematics and Theoretical Physics

| Peer-Reviewed |

The Effect of Environmental Factors (Temperatures & Humidity) on the Solar Cell Performance / Matlab Model

Received: 7 November 2020    Accepted: 27 November 2020    Published: 4 December 2020
Views:       Downloads:

Share This Article

Abstract

This paper provides an accurate modeling method for the photovoltaic panel using Matlab software. The mathematical model discusses the effect of the environmental factors on PV panels. The model based on specifications given on the manufacturer’s plate, a previous Simulink model was developed using Matlab code, to include the effect of humidity on the solar cell performance and efficiency. In the previous work on P-V characteristics, the temperature effect is discussed adequately, without mention the humidity side effects. In this paper, the effect of humidity on the fill factor and efficiency of solar cells is discussed. The conclusions come with many side effects of the humidity on the solar cell, which is the sediments trapped by water molecules, and energy loss due to the reflections of light from the condensed water surface. In addition to the heat carried by moister. The effect of this kind of heat has been studied through calculating the enthalpy of the moist air, and feel like temperature). According to this model and in Silicon solar cell, the lost energy due to reflection was equal to (Gave=842.0175 w/m2) on average. Due to this loss, solar cell current and voltage will be different. All these effects lead to a decrease in the fill factor and the efficiency of the solar cell, because of a reduction in the absorbing energy.

DOI 10.11648/j.ijamtp.20200604.12
Published in International Journal of Applied Mathematics and Theoretical Physics (Volume 6, Issue 4, December 2020)
Page(s) 61-67
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Solar Cell Efficiency, Matlab Code, Air Humidity

References
[1] S. M. Sze, “Physics of semiconductor devices”, John Wiley & Sons, New York, 1981, p. 264 (Chapter 14).
[2] G. Landis, R. Rafaelle, D. Merritt, 2004, “High temperature solar cell development”, 19th European Photo voltaic Science and Engineering Conference, Paris, France, June 7–11.
[3] J. J. Wysocki, P. Rappaport, 1960, “Effect of temperature on photo voltaic solar energy conversion”, Journal of Applied Physics 31, 571–578.
[4] J. C. C. Fan, 1986, “Theoretical temperature dependence of solar cell parameters”, Solar Cells 17 309–315.
[5] P. Singh, S. N. Singh, M. Lal, M. Husain, 2008, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell”, Solar Energy Materials and Solar Cells 92, 1611–1616.
[6] D. J. Friedman, 1996, “Modeling of tandem cell temperature coefficients”, in: 25th IEEE Photovoltaic Specialists Conference, Washington DC, IEEE, New York, pp. 89–92.
[7] M. A. Contreras, T. Nakada, A. O. Pudov, R. Sites, 2003, “ZnO/ZnS(O,OH)/Cu(In, Ga)Se2/ Mo solar cell with 18.6% efficiency”, in: Proceedings of the Third World Conference of Photovoltaic Energy Conversion, pp. 570–573.
[8] M. J. Jeng, Yu. L. Lee, L. B. Chang, 2009, “Temperature dependences of lnxGa1_xN multiple quantum well solar cells”, Journal of Physics D: Applied Physics, vol. 42, Iss. 10. pp. 6.
[9] Sabrina Benabbas, Zahir Rouabah, Hocine Heriche, and Nacer-Eddine Chelali, 2016, “A numerical study of high efficiency ultra-thin CdS/CIGS solar cells”, African Journal of Science, Technology, Innovation and Development, pp. 1–3.
[10] Saad Motahhir, Abdelilah Chalh, Abdelaziz El Ghzizal, Souad Sebti and Aziz Derouich, 2017, “Modeling of photovoltaic panel by using proteus”, Journal of Engineering Science and Technology Review 10 (2), 8-13.
[11] Huan-Liang Tsai, Ci-Siang Tu, and Yi-Jie Su, Member, IAENG, 2008, “Development of generalized photovoltaic model using MATLAB/SIMULINK”, Proceedings of the World Congress on Engineering and Computer Science, WCECS October 22 - 24, San Francisco, USA.
[12] N. LIMAM, A. BELGHACHI, 2017, “Analysis of CIGS and CdTe solar cell concentrators”, Journal of Ovonic Research Vol. 13, No. 3, May - June, p. 129–134.
[13] Gunjan Varshney1, D. S. Chauhan2, M. P. Dave, 2014, “Simscape based modelling & simulation of MPPT controller for PV sSystems’, IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) Volume 9, Issue 6 Ver. 1, PP 41-46 www.Iosrjournals.Org.
[14] “Priyanka Singh n, N. M. Ravindra, 2012, “Temperature dependence of solar cell performance—an analysis”, Solar Energy Materials & Solar Cells, Elsvier, 101, pp. 36–45.
[15] Habbati Bellia a, *, Ramdani Youcef b, Moulay Fatima, 2014, “A detailed modeling of photovoltaic module”, NRIAG Journal of Astronomy and Geophysics, vol 3, pp. 53–61, Taylor & Frances.
[16] Shivananda Pukhrem, “A photovoltaic panel model in Matlab/Simulink”, https://www.researchgate.net/publication/255721161.
[17] Adil Salman1, Arthur Williams2, Hanya Amjad3, M. Kamran Liaqat Bhatti3, M. Saad, 2015, “Simplified modeling of a PV Panel by using PSIM and its comparison with Laboratory Test Results”, Conference Paper • October, DOI: 10. 1109/GHTC. 7343997, https://www.researchgate.net/publication/286459105.
[18] Manoj Kumar Panjwani, Dr. Ghous Bukshsh Narejo1, 2014, “Effect of humidity on the efficiency of solar cell (photovoltaic)”, International Journal of Engineering Research and General Science Volume 2, Issue 4, June-July, ISSN 2091-2730.
[19] Abdou Latif Bonkaney1, Saidou Madougou, Rabani Adamou, 2017, “Impact of climatic parameters on the performance of solar photovoltaic (PV) module in Niamey”, Smart Grid and Renewable Energy, vol. 8, pp379-393.
Cite This Article
  • APA Style

    Zina Abd Alameer Al Shadidi. (2020). The Effect of Environmental Factors (Temperatures & Humidity) on the Solar Cell Performance / Matlab Model. International Journal of Applied Mathematics and Theoretical Physics, 6(4), 61-67. https://doi.org/10.11648/j.ijamtp.20200604.12

    Copy | Download

    ACS Style

    Zina Abd Alameer Al Shadidi. The Effect of Environmental Factors (Temperatures & Humidity) on the Solar Cell Performance / Matlab Model. Int. J. Appl. Math. Theor. Phys. 2020, 6(4), 61-67. doi: 10.11648/j.ijamtp.20200604.12

    Copy | Download

    AMA Style

    Zina Abd Alameer Al Shadidi. The Effect of Environmental Factors (Temperatures & Humidity) on the Solar Cell Performance / Matlab Model. Int J Appl Math Theor Phys. 2020;6(4):61-67. doi: 10.11648/j.ijamtp.20200604.12

    Copy | Download

  • @article{10.11648/j.ijamtp.20200604.12,
      author = {Zina Abd Alameer Al Shadidi},
      title = {The Effect of Environmental Factors (Temperatures & Humidity) on the Solar Cell Performance / Matlab Model},
      journal = {International Journal of Applied Mathematics and Theoretical Physics},
      volume = {6},
      number = {4},
      pages = {61-67},
      doi = {10.11648/j.ijamtp.20200604.12},
      url = {https://doi.org/10.11648/j.ijamtp.20200604.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijamtp.20200604.12},
      abstract = {This paper provides an accurate modeling method for the photovoltaic panel using Matlab software. The mathematical model discusses the effect of the environmental factors on PV panels. The model based on specifications given on the manufacturer’s plate, a previous Simulink model was developed using Matlab code, to include the effect of humidity on the solar cell performance and efficiency. In the previous work on P-V characteristics, the temperature effect is discussed adequately, without mention the humidity side effects. In this paper, the effect of humidity on the fill factor and efficiency of solar cells is discussed. The conclusions come with many side effects of the humidity on the solar cell, which is the sediments trapped by water molecules, and energy loss due to the reflections of light from the condensed water surface. In addition to the heat carried by moister. The effect of this kind of heat has been studied through calculating the enthalpy of the moist air, and feel like temperature). According to this model and in Silicon solar cell, the lost energy due to reflection was equal to (Gave=842.0175 w/m2) on average. Due to this loss, solar cell current and voltage will be different. All these effects lead to a decrease in the fill factor and the efficiency of the solar cell, because of a reduction in the absorbing energy.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Effect of Environmental Factors (Temperatures & Humidity) on the Solar Cell Performance / Matlab Model
    AU  - Zina Abd Alameer Al Shadidi
    Y1  - 2020/12/04
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ijamtp.20200604.12
    DO  - 10.11648/j.ijamtp.20200604.12
    T2  - International Journal of Applied Mathematics and Theoretical Physics
    JF  - International Journal of Applied Mathematics and Theoretical Physics
    JO  - International Journal of Applied Mathematics and Theoretical Physics
    SP  - 61
    EP  - 67
    PB  - Science Publishing Group
    SN  - 2575-5927
    UR  - https://doi.org/10.11648/j.ijamtp.20200604.12
    AB  - This paper provides an accurate modeling method for the photovoltaic panel using Matlab software. The mathematical model discusses the effect of the environmental factors on PV panels. The model based on specifications given on the manufacturer’s plate, a previous Simulink model was developed using Matlab code, to include the effect of humidity on the solar cell performance and efficiency. In the previous work on P-V characteristics, the temperature effect is discussed adequately, without mention the humidity side effects. In this paper, the effect of humidity on the fill factor and efficiency of solar cells is discussed. The conclusions come with many side effects of the humidity on the solar cell, which is the sediments trapped by water molecules, and energy loss due to the reflections of light from the condensed water surface. In addition to the heat carried by moister. The effect of this kind of heat has been studied through calculating the enthalpy of the moist air, and feel like temperature). According to this model and in Silicon solar cell, the lost energy due to reflection was equal to (Gave=842.0175 w/m2) on average. Due to this loss, solar cell current and voltage will be different. All these effects lead to a decrease in the fill factor and the efficiency of the solar cell, because of a reduction in the absorbing energy.
    VL  - 6
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Physics Department, University of Aden, Faculty of Education/Sabr, Aden, Yemen

  • Sections