International Journal of Electrical Components and Energy Conversion

| Peer-Reviewed |

Optimal Placement of an Unified Power Flow Controller in a Transmission Network by Unified Non Dominated Sorting Genetic Algorithm-III and Differential Evolution Algorithm

Received: 17 May 2019    Accepted: 17 June 2019    Published: 2 July 2019
Views:       Downloads:

Share This Article

Abstract

The interconnected transmission network of the Benin Electric Community (CEB) presents excessive losses that will increase further by 2025 and severely degrade the power quality supplying. This paper presents the quarto-criterion optimization of the positioning of a UPFC in the CEB's HTB network by U-NSGA III and DE. The positioning of an UPFC on line 3 and node 6 of this network has qualitatively improved the technical performance of this transmission network with an optimal installation cost of US $ 13126657.03. The hypervolumes of the two calculated methods showed that the U-NSGA-III is more accurate in terms of trend toward global solutions than DE. These convincing results confirm the performance of the U-NSGA-III method compared to the DE which also resulted in results close to those obtained by the U-NSGA-III with more or less narrow difference.

DOI 10.11648/j.ijecec.20190501.13
Published in International Journal of Electrical Components and Energy Conversion (Volume 5, Issue 1, June 2019)
Page(s) 10-19
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

U-NSGA-III, CEB, Hypervolume, UPFC, DE

References
[1] A. OLOULADE, MOUKENGUE IMANO, A. VIANOU, et R. BADAROU, «Contribution à l’étude de la répartition de puissance et à l’évaluation des pertes dans les réseaux de transport et de distribution de la communauté électrique du Benin et de la société béninoise d’énergie électrique (CEB-SBEE)», p. 87‑90, juill-2016.
[2] A. OLOULADE, MOUKENGUE IMANO, A. VIANOU, et H. A. V. Tamadaho, «Optimisation multicritère du placement d’un D-STATCOM dans un réseau de Distribution par les Colonies de Fourmis», juill-2018.
[3] R. W. Chang, « Mixed-Integer Method for Optimal UPFC Placement based on Line Flow-Based Equations », p. 6.
[4] T. Khurshaid, D. P. Walde, D. Kuanr, et A. Varshney, «Sensitivity Based Analysis for Optimal Location of UPFC to Reduce Power Loss and Congestion in Deregulated Electricity Market», vol. 4, no 5, p. 5, 2014.
[5] J. P. Navani, M. Goyal, et S. Sapra, «Optimal Placement of TCSC and UPFC for Enhancement of Steady State Security in Power System», no 2, p. 8.
[6] S. Singh, «OPTIMAL LOCATION OF UPFC IN POWER SYSTEM USING SYSTEM LOSS SENSITIVITY INDEX», vol. 1, no 7, p. 6.
[7] I. Shah, N. Srivastava, et J. Sarda, «Optimal placement of multi-type facts controllers using real coded genetic algorithm», in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 2016, p. 482‑487.
[8] E. Ghahremani et I. Kamwa, «Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface», IEEE Transactions on Power Systems, vol. 28, no 2, p. 764‑778, mai 2013.
[9] A. Bhandakkar Atul et L. Mathew, «Optimal Placement of Unified Power Flow Controller and Hybrid Power Flow Controller Using Optimization Technique», 2018.
[10] I. Made Wartana, J. G. Singh, W. Ongsakul, K. Buayai, et S. Sreedharan, «Optimal placement of UPFC for maximizing system loadability and minimize active power losses by NSGA-II», in 2011 International Conference & Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE), Pattaya, Thailand, 2011, p. 1‑8.
[11] M. M. M. El-arini et R. S. S. Ahmed, «OPTIMAL LOCATION OF FACTS DEVICES TO IMPROVE POWER SYSTEMS PERFORMANCE», Journal of Electrical Engineering, p. 9.
[12] H. I. Shaheen, G. I. Rashed, et S. J. Cheng, «Optimal location and parameter setting of UPFC for enhancing power system security based on Differential Evolution algorithm», International Journal of Electrical Power & Energy Systems, vol. 33, no 1, p. 94‑105, janv. 2011.
[13] B. V. Kumar et N. V. Srikanth, «A hybrid approach for optimal location and capacity of UPFC to improve the dynamic stability of the power system», Applied Soft Computing, vol. 52, p. 974‑986, mars 2017.
[14] CEB, «Communauté Electrique du Bénin». [En ligne]. Disponible sur: www.cebnet.org. [Consulté le: 15-déc-2018].
[15] M. Noroozian, L. Angquist, M. Ghandhari, et G. Andersson, «Use of UPFC for optimal power flow control», IEEE Transactions on Power Delivery, vol. 12, no 4, p. 1629‑1634, oct. 1997.
[16] Y. Collette et P. Siarry, Optimisation multiobjectif. Paris: Eyrolles, 2002.
[17] H. Seada et K. Deb, «U-NSGA-III: A Unified Evolutionary Algorithm for Single, Multiple, and Many-Objective Optimization», p. 30.
[18] K. Deb, A. Pratap, S. Agarwal, et T. Meyarivan, «A fast and elitist multiobjective genetic algorithm: NSGA-II», IEEE Transactions on Evolutionary Computation, vol. 6, no 2, p. 182‑197, avr. 2002.
[19] B. M. Wilamowski et J. D. Irwin, Éd., Power electronics and motor drives, 2nd ed. Boca Raton, FL: CRC Press, 2011.
[20] Oloulade, Arouna, Ceb 42-bus network data, URL: https://data.mendeley.com/datasets/wwm9gyrrc5/draft?a=4db9de20-7ff7-461f-822b-6af9e6adc67a.
Cite This Article
  • APA Style

    Oloulade Arouna, Moukengue Imano Adolphe, Fifatin François-Xavier, Ganye Sewlan Amedee Arcadius, Badarou Ramanou, et al. (2019). Optimal Placement of an Unified Power Flow Controller in a Transmission Network by Unified Non Dominated Sorting Genetic Algorithm-III and Differential Evolution Algorithm. International Journal of Electrical Components and Energy Conversion, 5(1), 10-19. https://doi.org/10.11648/j.ijecec.20190501.13

    Copy | Download

    ACS Style

    Oloulade Arouna; Moukengue Imano Adolphe; Fifatin François-Xavier; Ganye Sewlan Amedee Arcadius; Badarou Ramanou, et al. Optimal Placement of an Unified Power Flow Controller in a Transmission Network by Unified Non Dominated Sorting Genetic Algorithm-III and Differential Evolution Algorithm. Int. J. Electr. Compon. Energy Convers. 2019, 5(1), 10-19. doi: 10.11648/j.ijecec.20190501.13

    Copy | Download

    AMA Style

    Oloulade Arouna, Moukengue Imano Adolphe, Fifatin François-Xavier, Ganye Sewlan Amedee Arcadius, Badarou Ramanou, et al. Optimal Placement of an Unified Power Flow Controller in a Transmission Network by Unified Non Dominated Sorting Genetic Algorithm-III and Differential Evolution Algorithm. Int J Electr Compon Energy Convers. 2019;5(1):10-19. doi: 10.11648/j.ijecec.20190501.13

    Copy | Download

  • @article{10.11648/j.ijecec.20190501.13,
      author = {Oloulade Arouna and Moukengue Imano Adolphe and Fifatin François-Xavier and Ganye Sewlan Amedee Arcadius and Badarou Ramanou and Vianou Antoine and Tamadaho Herman},
      title = {Optimal Placement of an Unified Power Flow Controller in a Transmission Network by Unified Non Dominated Sorting Genetic Algorithm-III and Differential Evolution Algorithm},
      journal = {International Journal of Electrical Components and Energy Conversion},
      volume = {5},
      number = {1},
      pages = {10-19},
      doi = {10.11648/j.ijecec.20190501.13},
      url = {https://doi.org/10.11648/j.ijecec.20190501.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijecec.20190501.13},
      abstract = {The interconnected transmission network of the Benin Electric Community (CEB) presents excessive losses that will increase further by 2025 and severely degrade the power quality supplying. This paper presents the quarto-criterion optimization of the positioning of a UPFC in the CEB's HTB network by U-NSGA III and DE. The positioning of an UPFC on line 3 and node 6 of this network has qualitatively improved the technical performance of this transmission network with an optimal installation cost of US $ 13126657.03. The hypervolumes of the two calculated methods showed that the U-NSGA-III is more accurate in terms of trend toward global solutions than DE. These convincing results confirm the performance of the U-NSGA-III method compared to the DE which also resulted in results close to those obtained by the U-NSGA-III with more or less narrow difference.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Optimal Placement of an Unified Power Flow Controller in a Transmission Network by Unified Non Dominated Sorting Genetic Algorithm-III and Differential Evolution Algorithm
    AU  - Oloulade Arouna
    AU  - Moukengue Imano Adolphe
    AU  - Fifatin François-Xavier
    AU  - Ganye Sewlan Amedee Arcadius
    AU  - Badarou Ramanou
    AU  - Vianou Antoine
    AU  - Tamadaho Herman
    Y1  - 2019/07/02
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ijecec.20190501.13
    DO  - 10.11648/j.ijecec.20190501.13
    T2  - International Journal of Electrical Components and Energy Conversion
    JF  - International Journal of Electrical Components and Energy Conversion
    JO  - International Journal of Electrical Components and Energy Conversion
    SP  - 10
    EP  - 19
    PB  - Science Publishing Group
    SN  - 2469-8059
    UR  - https://doi.org/10.11648/j.ijecec.20190501.13
    AB  - The interconnected transmission network of the Benin Electric Community (CEB) presents excessive losses that will increase further by 2025 and severely degrade the power quality supplying. This paper presents the quarto-criterion optimization of the positioning of a UPFC in the CEB's HTB network by U-NSGA III and DE. The positioning of an UPFC on line 3 and node 6 of this network has qualitatively improved the technical performance of this transmission network with an optimal installation cost of US $ 13126657.03. The hypervolumes of the two calculated methods showed that the U-NSGA-III is more accurate in terms of trend toward global solutions than DE. These convincing results confirm the performance of the U-NSGA-III method compared to the DE which also resulted in results close to those obtained by the U-NSGA-III with more or less narrow difference.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Electrotechnic, Telecommunications and Informatics Laboratory (LETIA), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Laboratory of Electrical Engineering, Electronics, Automation and Telecommunications, University of Douala, Douala, Cameroon

  • Electrotechnic, Telecommunications and Informatics Laboratory (LETIA), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Laboratory of Thermophysic Characterization of Materials and Energy Mastering, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Electrotechnic, Telecommunications and Informatics Laboratory (LETIA), University of Abomey-Calavi, Abomey-Calavi, Benin

  • Sections