Structural Properties and Isotopic Abundance Ratio Analysis of Magnesium Gluconate Treated with the Energy of Consciousness Using LC-MS and NMR Spectroscopy
International Journal of Applied Agricultural Sciences
Volume 3, Issue 2, March 2017, Pages: 37-46
Received: Feb. 6, 2017; Accepted: Feb. 27, 2017; Published: Mar. 20, 2017
Views 1772      Downloads 58
Authors
Mahendra Kumar Trivedi, Trivedi Global, Inc., Henderson, Nevada, USA
Alice Branton, Trivedi Global, Inc., Henderson, Nevada, USA
Dahryn Trivedi, Trivedi Global, Inc., Henderson, Nevada, USA
Gopal Nayak, Trivedi Global, Inc., Henderson, Nevada, USA
Ariadne Esmene Afaganis, Trivedi Global, Inc., Henderson, Nevada, USA
Barbara Marie Bader, Trivedi Global, Inc., Henderson, Nevada, USA
Brian A. Weekes, Trivedi Global, Inc., Henderson, Nevada, USA
Daphne Luisa Dumas, Trivedi Global, Inc., Henderson, Nevada, USA
Denise Marie Fiedler, Trivedi Global, Inc., Henderson, Nevada, USA
Dennille Mellesia Smith, Trivedi Global, Inc., Henderson, Nevada, USA
Desi Pano, Trivedi Global, Inc., Henderson, Nevada, USA
Donna Felice Galla, Trivedi Global, Inc., Henderson, Nevada, USA
Donna Maria Alija, Trivedi Global, Inc., Henderson, Nevada, USA
Elaine Barbara Mullins, Trivedi Global, Inc., Henderson, Nevada, USA
Elaine M. Scorza, Trivedi Global, Inc., Henderson, Nevada, USA
Ellia O'Donnell, Trivedi Global, Inc., Henderson, Nevada, USA
Fabio Massimo Paciucci, Trivedi Global, Inc., Henderson, Nevada, USA
Frances Goodman Warlick, Trivedi Global, Inc., Henderson, Nevada, USA
Haddon Norman Salt, Trivedi Global, Inc., Henderson, Nevada, USA
Inthirani Arul, Trivedi Global, Inc., Henderson, Nevada, USA
Jacqueline Y. Andrews, Trivedi Global, Inc., Henderson, Nevada, USA
James Jay McLeran, Trivedi Global, Inc., Henderson, Nevada, USA
James Stephen Burnett, Trivedi Global, Inc., Henderson, Nevada, USA
Jean Caroline White, Trivedi Global, Inc., Henderson, Nevada, USA
Parthasarathi Panda, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Kalyan Kumar Sethi, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Article Tools
Follow on us
Abstract
The present study was aimed to evaluate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on magnesium gluconate for the change in the structural properties and isotopic abundance ratio (PM+1/PM and PM+2/PM) using LC-MS and NMR spectroscopy. Magnesium gluconate was divided into two parts – one part was control, and another part was treated with The Trivedi Effect®- Biofield Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® treated sample. The LC-MS analysis of both the control and treated samples revealed the presence of the mass of the protonated magnesium gluconate at m/z 415 at the retention time of 1.52 min with almost similar fragmentation pattern. The relative peak intensities of the fragment ions of the treated sample were significantly altered compared with the control sample. The proton and carbon signals for CH, CH2 and CO groups in the proton and carbon NMR spectra were found almost similar for the control and the treated samples. The isotopic abundance ratio analysis revealed that the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C or 17O/16O or 25Mg/24Mg) and PM+2/PM (18O/16O or 26Mg/24Mg) were significantly decreased in the treated sample by 35.97% and 66.77%, respectively compared with the control sample. Briefly, 13C, 2H, 17O, and 25Mg contributions from (C12H23MgO14)+ to m/z 416; 18O and 26Mg contributions from (C12H23MgO14)+ to m/z 417 in the treated sample were significantly reduced compared with the control sample. Thus, The Trivedi Effect® treated magnesium gluconate could be valuable for designing better pharmaceutical and/or nutraceutical formulations through its changed physicochemical and thermal properties, which might be providing better therapeutic response against various diseases such as diabetes mellitus, allergy, aging, inflammatory diseases, immunological disorders, and other chronic infections. The Trivedi Effect® Treated magnesium gluconate might be supportive to design the novel potent enzyme inhibitors using its kinetic isotope effects.
Keywords
Consciousness Energy Healing Treatment, The Trivedi Effect®, Biofield Energy Healers, Magnesium Gluconate, LC-MS, Isotopic Abundance Ratio, Kinetic Isotope Effects, NMR
To cite this article
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ariadne Esmene Afaganis, Barbara Marie Bader, Brian A. Weekes, Daphne Luisa Dumas, Denise Marie Fiedler, Dennille Mellesia Smith, Desi Pano, Donna Felice Galla, Donna Maria Alija, Elaine Barbara Mullins, Elaine M. Scorza, Ellia O'Donnell, Fabio Massimo Paciucci, Frances Goodman Warlick, Haddon Norman Salt, Inthirani Arul, Jacqueline Y. Andrews, James Jay McLeran, James Stephen Burnett, Jean Caroline White, Parthasarathi Panda, Kalyan Kumar Sethi, Snehasis Jana, Structural Properties and Isotopic Abundance Ratio Analysis of Magnesium Gluconate Treated with the Energy of Consciousness Using LC-MS and NMR Spectroscopy, International Journal of Applied Agricultural Sciences. Vol. 3, No. 2, 2017, pp. 37-46. doi: 10.11648/j.ijaas.20170302.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Birch NJ (1990) Magnesium in biology and medicine: an overview in Metal ions in biological systems, Volume 26: Compendium on magnesium and its role in biology, nutrition and physiology, Sigel H, Sigel A (Eds.), Marcel Dekker Inc., New York, pp. 105-115.
[2]
Garfinkel L, Garfinkel D (1985) Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 4: 60-72.
[3]
Choi MK, Weaver CM (2017) Daily intake of magnesium and its relation to urinary excretion in korean healthy adults consuming self-selected diets. Biol Trace Elem Res 176, 105-113.
[4]
Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7: 8199-8226.
[5]
William JH, Danziger J (2016) Magnesium deficiency and proton-pump inhibitor use: A clinical review. J Clin Pharmacol 56: 660-668.
[6]
Guerrera MP, Volpe SL, Mao JJ (2009) Therapeutic uses of magnesium. Am Fam Physician 80: 157-162.
[7]
Fleming TE, Mansmann Jr HC (1999) Methods and compositions for the prevention and treatment of diabetes mellitus. United States Patent 5871769, 1-10.
[8]
Fleming TE, Mansmann Jr HC (1999) Methods and compositions for the prevention and treatment of immunological disorders, inflammatory diseases and infections. United States Patent 5939394, 1-11.
[9]
Weglicki WB (2000) Intravenous magnesium gluconate for treatment of conditions caused by excessive oxidative stress due to free radical distribution. United States Patent 6100297, 1-6.
[10]
Turner RJ, Dasilva KW, O'Connor C, van den Heuvel C, Vink R (2004) Magnesium gluconate offers no more protection than magnesium sulphate following diffuse trau-matic braininjury in rats. J Am Coll Nutr 23: 541S-544S.
[11]
Martin RW, Martin JN Jr, Pryor JA, Gaddy DK, Wiser WL, Morrison JC (1988) Comparison of oral ritodrine and magnesium gluconate for ambulatory tocolysis. Am J Obstet Gynecol 158: 1440-1445.
[12]
Lee KH, Chung SH, Song JH, Yoon JS, Lee J, Jung MJ, Kim JH (2013) Cosmetic compositions for skin-tightening and method of skin-tightening using the same. United States Patent 8580741 B2.
[13]
Coudray C, Rambeau M, Feillet-Coudray C, Gueux E, Tressol JC, Mazur A, Rayssiguier Y (2005) Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach. Magnes Res 18: 215-223.
[14]
Stenger VJ (1999) Bioenergetic fields. Sci Rev Alternative Med 3.
[15]
Rogers, M (1989) "Nursing: A Science of Unitary Human Beings." In J. P. Riehl-Sisca (ed.) Conceptual Models for Nursing Practice. 3rd Edn. Norwark: Appleton & Lange.
[16]
Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita 35: 22-29.
[17]
Warber SL, Cornelio D, Straughn, J, Kile G (2004) Biofield energy healing from the inside. J Altern Complement Med 10: 1107-1113.
[18]
Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20.
[19]
Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Effect of biofield treated energized water on the growth and health status in chicken (Gallus gallus domesticus). Poult Fish Wildl Sci 3: 140.
[20]
Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) In vitro evaluation of biofield treatment on cancer biomarkers involved in endometrial and prostate cancer cell lines. J Cancer Sci Ther 7: 253-257.
[21]
Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, Mondal SC, Jana S (2015) Effect of biofield energy treatment on Streptococcus group B: A postpartum pathogen. J Microb Biochem Technol 7: 269-273.
[22]
Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) In vitro evaluation of antifungal sensitivity assay of biofield energy treated fungi. Fungal Genom Biol 5: 125.
[23]
Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Evaluation of plant growth, yield and yield attributes of biofield energy treated mustard (Brassica juncea) and chick pea (Cicer arietinum) seeds. Agriculture, Forestry and Fisheries 4: 291-295.
[24]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Effect of biofield energy treatment on chlorophyll content, pathological study, and molecular analysis of cashew plant (Anacardium occidentale L.). Journal of Plant Sciences 3: 372-382.
[25]
Trivedi MK, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Physicochemical evaluation of biofield treated peptone and malmgren modified terrestrial orchid medium. American Journal of Bioscience and Bioengineering 3: 169-177.
[26]
Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Physicochemical characterization of biofield treated orchid maintenance/replate medium. Journal of Plant Sciences. 3: 285-293.
[27]
Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of silicon, tin and lead powders. J Material Sci Eng 2: 1-7.
[28]
Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, Jana S (2015) Evaluation of biofield treatment on physical and structural properties of bronze powder. Adv Automob Eng 4: 119.
[29]
Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Spectroscopic characterization of disulfiram and nicotinic acid after biofield treatment. J Anal Bioanal Tech 6: 265.
[30]
Trivedi MK, Patil S, Shettigar H, Singh R, Jana S (2015) An impact of biofield treatment on spectroscopic characterization of pharmaceutical compounds. Mod Chem Appl 3: 159.
[31]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Mishra RK, Jana S (2015) Physicochemical characterization of biofield energy treated calcium carbonate powder. American Journal of Health Research 3: 368-375.
[32]
Trivedi MK, Nayak G, Patil S, Tallapragada RM, Jana S, Mishra RK (2015) Bio-field treatment: An effective strategy to improve the quality of beef extract and meat infusion powder. J Nutr Food Sci 5: 389.
[33]
Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S (2015) Thermal, spectroscopic and chromatographic characterization of biofield energy treated benzophenone. Science Journal of Analytical Chemistry 3: 109-114.
[34]
Trivedi MK, Patil S, Mishra RK, Jana S (2015) Structural and physical properties of biofield treated thymol and menthol. J Mol Pharm Org Process Res 3: 127.
[35]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Characterization of physical, spectroscopic and thermal properties of biofield treated biphenyl. American Journal of Chemical Engineering. 3: 58-65.
[36]
Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S (2016) Determination of isotopic abundance of 2H, 13C, 18O, and 37Cl in biofield energy treated dichlorophenol isomers. Science Journal of Analytical Chemistry 4: 1-6.
[37]
Trivedi MK, Branton A, Trivedi D, Nayak G, Sethi KK, Jana S (2016) Gas chromatography-mass spectrometry based isotopic abundance ratio analysis of biofield energy treated methyl-2-napthylether (Nerolin), American Journal of Physical Chemistry 5: 80-86.
[38]
Trivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Gas chromatography-mass spectrometric analysis of isotopic abundance of 13C, 2H, and 18O in biofield energy treated p-tertiary butylphenol (PTBP). American Journal of Chemical Engineering 4: 78-86.
[39]
Trivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Isotopic abundance ratio analysis of 1,2,3-trimethoxybenzene (TMB) after biofield energy treatment (The Trivedi Effect®) using gas chromatography-mass spectrometry, American Journal of Applied Chemistry 4: 132-140.
[40]
Schellekens RC, Stellaard F, Woerdenbag HJ, Frijlink HW, Kosterink JG (2011) Applications of stable isotopes in clinical pharmacology. Br J Clin Pharmacol 72: 879-897.
[41]
Muccio Z, Jackson GP (2009) Isotope ratio mass spectrometry. Analyst 134: 213-222.
[42]
Vanhaecke F, Kyser K (2012) Isotopic composition of the elements In Isotopic Analysis: Fundamentals and applications using ICP-MS (1stedn), Edited by Vanhaecke F, Degryse P. Wiley-VCH GmbH & Co. KGaA, Weinheim.
[43]
Smith RM (2004) Understanding Mass Spectra: A Basic Approach, Second Edition, John Wiley & Sons, Inc, ISBN 0-471-42949-X.
[44]
Meija J, Coplen TB, Berglund M, Brand WA, De Bievre P, Groning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Isotopic compositions of the elements 2013 (IUPAC technical Report). Pure Appl Chem 88: 293-306.
[45]
Asperger S (2003) Chemical Kinetics and Inorganic Reaction Mechanisms Springer science + Business media, New York.
[46]
Trivedi MK, Mohan TRR (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176.
[47]
Cleland WW (2003) The use of isotope effects to determine enzyme mechanisms. J Biol Chem 278: 51975-51984.
[48]
Nikolic VD, Illic DP, Nikolic LB, Stanojevic LP, Cakic MD, Tacic AD, Ilic-Stojanovic SS (2014) The synthesis and characterization of iron (II) gluconate. Advanced technologies 3: 16-24.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186