International Journal of Applied Agricultural Sciences

| Peer-Reviewed |

Selenium in Soil-Crop-Animal System: A Holistic Perspective to Manage Animal and Human Health

Received: 10 March 2017    Accepted: 24 March 2017    Published: 25 April 2017
Views:       Downloads:

Share This Article

Abstract

Selenium (Se) dependent enzymes play important roles in physiological functions such as thyroid hormone metabolism, strengthens anti-oxidant defense system and immune system. However, about 800 million people worldwide are believed to be deficient in Se which is attributed to low Se levels in the soil. This is because Se in plant and animal products in human diet depends upon the available Se in the soil. Deficiency of Se can be prevented or treated by adequate dietary intake or through direct supplementation. There have been reports that patients with dilated cardiomyopathy, HIV viral loads and cancer have responded to Se supplementation. However, food fortification has been found to be more efficient than supplementation. Both agronomic biofortification and genetic biofortification have been used to increase Se content of food crops and animal products. Genetic engineering makes use of key genes of Se hyperaccumulators to increase Se accumulating potential of food crops. Agronomic biofortification increases Se content of food crops by adding Se rich fertilizers to the soil or foliar application of Se. Selenium can also be added to animal diets or feedstuff to increase Se content of meat, eggs, and milk. Although inorganic forms of Se are approved as feed additives, they are less efficient than organic sources such as selenomethionine (SeMet) which is the dominant form in plants and animals. Animal products have been found to have higher Se content than plant products with fish having the highest Se content. Fruits and vegetables have a low content of Se probably because of their low protein content. Recommendations for dietary intake of Se vary with country, age and sex. There are concerns that the present recommended Se daily allowance may not be adequate due to discovery of other selenoenzymes with higher Se requirements than gluthathione peroxidase. There may be a need to review the current recommended daily allowance for Se in order to improve human health.

DOI 10.11648/j.ijaas.20170303.11
Published in International Journal of Applied Agricultural Sciences (Volume 3, Issue 3, May 2017)
Page(s) 51-66
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Selenium, Supplementation, Dietary Intake, Fortification, Selenomethionine

References
[1] Saha, U., Fayiga, A., Sonon, L. 2017. Selenium in the Soil-Plant Environment: A Review. Int. J. Applied Agric. Sci. 3, (1): 1-18. doi: 10.11648/j.ijaas.20170301.11.
[2] Rayman, M. P. 2000. The importance of selenium to human health. Lancet 356, 233–241.
[3] Benstoem, C., Goetzenich, A., Kraemer, S., Borosch, S., Manzanares, W., Hardy, G., Stoppe, C. 2015. Selenium and its supplementation in cardiovascular disease—what do we know? Nutrients, 7 (5): 3094-3118.
[4] Zhang, Z., Zhang, J., Xiao, J. 2014. Selenoproteins and selenium status in bone physiology and pathology. Biochimica et Biophysica Acta - General Subjects, 1840 (11): 3246-3256. DOI: 10.1016/j.bbagen.2014.08.001.
[5] Hatfield, D. L., Tsuji, P. A., Carlson, B. A., Gladyshev, V. N. 2014. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci. 39: 112–120.doi:10.1016/j.tibs.2013.12.007.
[6] Roman, M., Jitaru, P., and Barbante, C. (2014).Selenium biochemistry and its role for human health. Metallomics 6, 25–54.doi:10.1039/C3MT00185G.
[7] Riza, M., Mehmood, K. T. 2011. Selenium in human health and disease:A review. JPMI 26: 120-133.
[8] Guo, L., Lang, M., Chandrasekar, R., Liu, G. 2014. Advances in the Study of Genetic Enrichment of Selenium in Plants. Clon Transgen 3:121. doi:10.4172/2168-9849.1000121.
[9] Li, S. J., Li, W., Hu, X., Yang, L. S., Xirao, R. D., 2009. Soil selenium concentration and Kashin-Beck disease prevalence in Tibet, China. Front. Environ. Sci. Eng. China 3: 62–68.
[10] Alfthan, G., Eurola, M., Ekholm, P., Ven?l?inen, E.-R., Root, T., Korkalainen, K., Hartikainen, H., Salminen, P., Hietaniemi, V., Aspila, P., Aro, A. 2015. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J Trace Elements Medicine Biol. 31: 142-147.
[11] Fordyce, F. (2005). Selenium deficiency and toxicity in the environment. In O. Selinus (Ed.), Essentials of medical geology (pp. 373–415). Elsevier.
[12] Lavu, R. V., Van De Wiele, T., Pratti, V. L., Tack, F., Du Laing, G. 2016. Selenium bioaccessibility in stomach, small intestine and colon: Comparison between pure Se compounds, Se-enriched food crops and food supplements. Food Chem. 197: 382-387. DOI: 10.1016/j.foodchem. 2015.08.001.
[13] Rayman, M. P. 2008. Food-chain selenium and human health: Emphasis on intake. Br.J.Nutr. 100: 254–268.
[14] Johnson, C. C., Fordyce, F. M., Rayman, M. P. 2010. Symposium on Geographical and geological influences on nutrition: factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc. Nutr. Soc. 69: 119–132.
[15] Malagoli, M., Schiavon, M., dall’ Acqua, S., & Pilon-Smits, E. A. H. (2015). Effects of selenium biofortification on crop nutritional quality. Frontiers Plant Sci. 6, 280. http://doi.org/10.3389/fpls.2015.00280.
[16] Barclay, M. Allan MacPherson, N. I., Dixon, J. 1995. Selenium content of a range of UK food. J. Food Composition Anal. 8 (4): 307–318. doi:10.1006/jfca.1995.1025.
[17] Funes-Collado, V., Morell-Garcia, A., Rubio, R., Lopez-Sanchez, J. 2013. Study of selenocompounds from selenium-enriched culture of edible Sprouts. Food Chem. 141: 3738–3743.
[18] Olson, O. E., Palmer, I. S. 1976. Selenoamino acids in tissues of rats administered inorganic selenium. Metabolism 25: 299-306.
[19] Brody, T. 1999. Inorganic nutrients. In: Brody T, editor. Nutritional biochemistry. 2nd edn. San Diego: Academic Press, p. 693–878.
[20] Mason, J. B., Garcia M. 1993. Micronutrient deficiency—The global situation. SCN News 9: 11–6.
[21] Kennedy, G., Nantel, G., Shetty, P. 2003. The scourge of ‘‘hidden hunger’’: Global dimensions of micronutrient deficiencies. Food Nutr Agric, 32: 8–16.
[22] Jiang, Y., Zeng, Z., Bu, Y., Ren, C., Li, J., Han, J., Tao, C., Zhang, K., Wang, X., Lu, G., Li, Y., Hu, Y. 2015. Effects of selenium fertilizer on grain yield, Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil Environ. 61 (8): 371–377. doi: 10.17221/284/2015-PSE.
[23] Edmondson, A. J., Norman, B. B., Surther, D. 1993. Survey of state veterinarians and state veterinary diagnostic laboratories for selenium deficiency and toxicosis in animals. J. American Veterinary Medicine Association, 202: 865-872.
[24] Qin, H. B., Zhu, J. M., Liang, L., Wang, M. S., Su, H. 2013. The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environ. Intern., 52: 66-74. DOI: 10.1016/j.envint.2012.12.003.
[25] Dhillon, K., & Dhillon, S. 2014. Development and mapping of seleniferous soils in northwestern India. Chemosphere99: 56–63.
[26] Welch, R. M., Combs Jr, G. F., Duxbury, J. M. 1997. Toward a ‘‘Greener’’ revolution. Issues Sci Technol. 14: 50–8.
[27] Combs Jr, G. F., Welch, R. M., Duxbury, J. M., Uphoff, N. T., Nesheim, M. C. 1996. Food-based approaches to preventing micronutrient malnutrition: An international research agenda. Cornell International Institute for Food, Agriculture, and Development. Ithaca NY: Cornell University.
[28] Schwarz, K., Foltz, C. M. 1957. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 79: 3392-3393.
[29] FDA (U.S. Food and Drug Administration).1974. Title 21, Code of Federal Regulations, Part 573.920. January 9, 1974.
[30] FDA (US Food and Drug Administration). 2004. Title 21. Food and Drugs: Food additives permitted in feed and drinking water of animals. Available online at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=573. Accessed February 22, 2017.
[31] Schrauzer, G. N. 2000. Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J. Nutr., 130: 1653–1656.
[32] Weiss, W. P. 2003. Selenium nutrition of dairy cows: Comparing responses to organic and inorganic selenium forms. Pages 333– 343 in Proc. 19th Alltech Annual Symp. Nutr., Biotechnol. Feed Food Ind. P. T. Lyons and K. A. Jacques, ed. Nottingham University Press, Nottingham, UK.
[33] Spallholz, J. E. 1997. Free radical generation by selenium compounds and their prooxidant toxicity. Biomedicine Environ. Sci. 10, 260-270.
[34] Mahan, D. C. 2001. Selenium and Vitamin E in Swine Nutrition. In: A. J. Lewis and L. L. Southern (eds.), Swine Nutrition, Second Edition, CRC Press, New York. Pp 282-314.
[35] Surai, P. F., Fisinin, V. I., Papazyan, T. T. 2008. Selenium deficiency in Europe: causes and consequences. In: P. F. Surai and J. A. Taylor-Pickard (eds.) Current advances in selenium research and applications, pp.13-44. Wageningen Academic Publishers, The Netherlands.
[36] Eisenberg, S. (2007). Relative stability of selenites and selenates in feed premixes as a function of water activity. J. AOAC Int., 90: 349–353.
[37] Groce, A. W., Miller, E. R., Ullrey, D. R., Ku, P. K., Keahey, K. K., Ellis, D. J. 1973. Selenium requirements in corn-soy diets for growing-finishing swine. J Animal Sci. 37, 948-956.
[38] Suzuki, K. T., and Y. Ogra. 2002. Metabolic pathway for selenium in the body: Speciation by HPLC-ICP MS with enriched Se. Food Addit. Contam. 19: 974–983.
[39] Juniper, D. T., R. H. Phipps, A. K. Jones, and G. Bertin. 2006. Selenium Supplementation of Lactating Dairy Cows: Effect on Selenium Concentration in Blood, Milk, Urine, and Feces. J. Dairy Sci. 89: 3544–3551.
[40] Schrauzer, G. N. 2003. The nutritional significance, metabolism and toxicology of selenomethionine. Adv. Food Nutr. Res., 47:73–112.
[41] Terry, N., Zayed, A. M., de Souza, M. P., Tarun, A. S. 2000. Selenium in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 51: 401–432.
[42] Whanger, P. D. 2002. Selenocompounds in plants and animals and their biological significance. J. Amer. Col. Nutr., 21: 223–232.
[43] Schrauzer, G. N., Surai, P. F. 2009. Selenium in human and animal nutrition: Resolved and unresolved issues. A partly historical treatise in commemoration of the fiftieth anniversary of the discovery of the biological essentiality of selenium, dedicated to the memory of Klaus Schwarz (1914–1978) on the occasion of the thirtieth anniversary of his death. Critical Reviews in Biotechnology, 29: 1, 2-9.
[44] Pehrson, B., Ortman, K., Madjid, N., Trafikowska, U. 1999. The influence of dietary selenium as selenium yeast or sodium selenite on the concentration of selenium in the milk of suckler cows and on the selenium status of their calves. J. Anim. Sci. 77: 3371-3376.
[45] Bierla, K., Dernovics, M., Vacchina, V., Szpunar, J., Bertin, G., Lobinski, R. 2008. Determination of selenocysteine and selenomethionine in edible animal tissues by 2D size-exclusion reversed-phase HPLC-ICP-MS following carbamidomethylation and proteolytic extraction. Analyt. Bioanalytic. Chem., 390: 1789–1798.
[46] Bertin, G. and Brillard, J. P. 2008. Effect of selenium source and dose on the accumulation and distribution of total selenium and selenized amino acids in the yolk, albumen and whole chicken egg. WPSA J., 64 (Suppl 2): 228.
[47] Blau, M. 1961. Biosynthesis of [7SSe] selenomethionine and [TsSe] selenocystine. Biochim. Biophys. Acta 49, 389.
[48] Schrauzer, G. N. 2006. Selenium yeast: composition, quality, analysis, and safety". Pure Appl Chem. 78: 105–109.
[49] Mahan, D. C. 2005. Organic selenium fed to swine - its potential impact on human health issues. In: Midwest Swine Nutrition Conference. Indianapolis, IN, 2005.
[50] Surai, P. F., Karadas F., Pappas, A., Sparks, N. 2006. Effect of organic selenium in quail diet on its accumulation in tissues and transfer to the progeny. Br Poult Sci. 47: 65–72.
[51] Fisinin, V., Papazyan, T., Surai, P.F. 2009. Producing selenium-enriched eggs and meat to improve the selenium status of the general population". Crit Rev Biotech. 29: 18–28.
[52] Navas-Carretero S, Cuervo, M. Abete, I., Zulet, M., Martinez. J. 2010. Frequent consumption of selenium-enriched chicken meat by adults causes weight loss and maintains their antioxidant status. Biol Trace Elem Res. 143: 8–19.
[53] Spallholz, J.E., Rafferty, A. 1987. In Selenium in Biology and Medicine, Part A, G. F. Combs, J. E. Spallholz, O. A. Levander, J. E. Oldfield (Eds.), pp. 516–529, Van Nostrand Reinhold, New York.
[54] Kim, Y. Y., Mahan, D. C. 2001. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J. Anim. Sci. 79, 942.
[55] Delezie, E., M. Rovers, A. Van der Aa, A. Ruttens, S. Wittocx, and L. Segers. 2014. Comparing responses to different selenium sources and dosages in laying hens. Poultry Sci. 93: 3083–3090.
[56] Yang, G-Q., Zhu, L-Z., Liu, S-J., Gu, L-Z., Qian, P-C., Huang, J-H. and Lu, M-D. (1987). Human selenium requirements in China. In: Selenium inBiology and Medicine. (Eds.: Combs, G. F. Jr., Spallholz, J. E., Levander, O. A. and Oldfield, J. E), New York: Van Nostrand Reinhold Company, pp. 589–607.
[57] Aro, A., Kumpalainen, J., Alfthan, G., Voshchenko, A. V. and Ivanov, V.N. (1994). Factors affecting the selenium intake of people in Tranbaikalian Russia. Biol. Trace El. Res., 40:277–285.
[58] Pavlata, L, A. Pechova, and J. Illek. 2000. Direct and indirect assessment of selenium status in cattle. Acta Vet. Brno. 69: 281-287.
[59] Dargatz, D. A., Ross, P. F. 1996. Blood selenium concentrations in cows and heifers on 253 cow-calf operations in 18 states. J. Anim. Sci. 74: 2891–2895.
[60] Villard, D., Arthur, J. R., Gonzalez, J. M., Pallares, F. J. 2002. Selenium status in cattle: Interpretation of laboratory results. Bovine Pract. 36: 73–80.
[61] NRC. 1996. Nutrient Requirements of Beef Cattle. 7th revised edition. National Academy Press. Washington, D. C. 242 p.
[62] Longnecker, M. P., Stram, D. O., Taylor, P. R., Levander, O. A., Howe, M., Veillon, C., McAdam, P. A., Patterson, K. Y., Holden, J. M., Steven Morris, J. 1996. Use of selenium concentration in whole blood, serum, toenails, or urine as a surrogate measure of selenium intake. Epidemiology 7: 384–390.
[63] Ellis, R. G., Herdt, T. H., Stone, H. D. 1997. Physical, hematologic, biochemical and immunologic effect of supranutritional supplementation with dietary selenium in dairy cows. Am. J. Vet. Res. 58: 760-764.
[64] Hall, J. A., Bobe, G., Hunter, J. K., Vorachek, W. R., Stewart, W. C., Vanegas, J. A., Estill, C. T., Mosher, W. D., Pirelli, G. J. 2013. Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS ONE 8: e58188.
[65] Chorfi, Y., Girard, V., Fournier, A., Couture, Y. 2011. Effect of subcutaneous selenium injection and supplementary selenium source on blood selenium and glutathione peroxidase in feedlot heifers. Can. Vet. J. 52: 1089–1094.
[66] Mehdi, Y., Clinquart, A., Hornick, J.-L., Cabaraux, J.-F., Istasse, L., Dufrasne, I. 2015. Meat composition and quality of young growing Belgian Blue bulls offered a fattening diet with selenium enriched cereals. Can. J. Anim. Sci. 95: 465–473.
[67] Ran, L., Wu, X., Shen, X., Zhang, K., Ren, F., Huang, K. 2010. Effects of selenium form on blood and milk selenium concentrations, milk component and milk fatty acid composition in dairy cows. J. Sci. Food Agric. 90: 2214–2219.
[68] Weiss,W. P., Hogan, J. S. 2005. Effect of selenium source on selenium status, neutrophil function, and response to intramammary endotoxin challenge of dairy cows. J. Dairy Sci. 88, 4366–4374.
[69] Würmli, R., Wolffram, S., Stingelin, Y. and Scharrer, E. 1989. Stimulation of mucosal uptake of selenium from selenite by L-cysteine in sheep small intestine. Biol. Trace Elem. Res., 20:75–85.
[70] Griffiths, N. M., Stewart, R. D. H. and Robinson, M. F. 1976. The metabolism of [75Se] selenomethionine in four women. Br. J. Nutr., 35: 373–382.
[71] Thomson C. D., Stewart R. D. H. 1974. The metabolism of 75Se selenite in young women. Br. J. Nutr. 32, 303–323.
[72] Swanson, C. A., Patterson, B. H., Levander, O. A., Veillon, C., Taylor, P. R., Helzlsouer, K., McAdam, P. A. and Zech, L. A. 1991. Human [74Se] selenomethionine metabolism: a kinetic model. Am. J. Clin. Nutr., 54: 917–926.
[73] Daniels, L. A. 1996. Selenium metabolism and bioavailability. Biol. Trace Elem. Res., 54: 185–199.
[74] Wolffram, S. 1999. Absorption and metabolism of selenium: difference between inorganic and organic sources. In: Biotechnology in the feedindustry. Proceedings of Alltech’s 15th Annual Symposium (Eds.: Lyons, T. P. and Jacques, K. A.), Nottingham: Nottingham University Press, pp. 547–566.
[75] Flohe, L., Günzler, W. A., Schock, H. H. 1973. Glutathione peroxidase: A selenoenzyme, FEBS Letters, 32, (1):132-134, http://dx.doi.org/10.1016/0014-5793(73)80755-0.
[76] Hatfield, D. L., Tsuji, P. A., Carlson, B. A., Gladyshev, V. N. (2014).Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci. 39, 112–120.doi:10.1016/j.tibs.2013.12.007.
[77] Rayman, M. P. 2012. Selenium and human health. Lancet 379: 1256–1268.
[78] Beck, M. A., Handy, J., Levander, O. A. 2004. Host nutritional status: The neglected virulence factor. Trends Microbiol., 12, 417–423.
[79] Jun, E. J., Ye, J. S., Hwang, I. S., Kim, Y. K., Lee, H. 2011. Selenium deficiency contributes to the chronic myocarditis in coxsackievirus-infected mice. Acta Virol.55: 23–29.
[80] Al-Matary, A., Hussain, M., Ali, J. 2013. Selenium: A brief review and a case report of selenium responsive cardiomyopathy. BMC Pediatrics, 13 (1), DOI: 10.1186/1471-2431-13-39.
[81] Hurwitz, B. E., Klaus, J. R., Llabre, M. M., Gonzalez, A., Lawrence, P. J., Maher, K. J., et al. (2007). Suppression of human immunodeficiency virus type 1 viral load with selenium supplementation: A randomized controlled trial. Archives Internal Medicine, 167: 148-154.
[82] Shor-Posner, G., Lecusay, R., Miguez, M., Moreno-Black, G., Zhang, G., Rodriguez, N., et al. (2003). Psychological burden in the era of HAART: Impact of selenium therapy. International J. Psychiatry Medicine, 33, 55-69.
[83] Pitney, C. L., Royal, M., Klebert, M. 2009. Selenium Supplementation in HIV-Infected Patients: Is There Any Potential Clinical Benefit? Journal of the Association of Nurses in AIDS Care, 20 (4): 326-333. DOI: 10.1016/j.jana.2009.03.006.
[84] Schrauzer, G. N., White, D. A., Schneider, C. J. 1977. Cancer mortality correlation studies—III: statistical associations with dietary selenium intakes, Bioinorg. Chem. 7: 23–31.
[85] Clark, L. C., Combs Jr., G. F., Turnbull, B. W. et al., 1996. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial, JAMA 276: 1957–1963.
[86] Allen, N. E., Appleby, P. N., Roddam, A. W. et al., 2008. Plasma selenium concentration and prostate cancer risk: results from the European Prospective Investigation into Cancer and Nutrition (EPIC), Am. J. Clin. Nutr. 88: 1567–1575.
[87] Steinbrenner, H., Seis, H. 2009. Protection against reactive oxygen species by selenoproteins. Biochimica et Biophysica Acta 1790: 1478–1485.
[88] Bleys, J., Navas-Acien, A., Guallar, E. 2007. Serum selenium and diabetes in U.S. adults. Diabetes Care, 30 (4): 829-834. DOI: 10.2337/dc06-1726.
[89] Stranges, S., Marshall, J. R., Natarajan, R., Donahue, R. P., Trevisan, M., Combs, G. F., et al. 2007. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med, 147: 217-23.
[90] Laclaustra, M., Navas-Acien, A., Stranges, S., Ordovas, J. M., Guallar, E. 2009. Serum selenium concentrations and hypertension in the US population. Circulation: Cardiovascular Quality and Outcomes, 2 (4): 369-376. DOI: 10.1161/CIRCOUTCOMES.108. 831552.
[91] Stapleton, S. R. 2000. Selenium: An insulin-mimetic. Cell Mol Life Sci 2000; 57: 1874-9.
[92] Mueller, A. S., Pallauf, J. 2006. Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem, 17: 548-60.
[93] Akbaraly, T. N., Arnaud, J., Rayman, M. P., Hininger-Favier, I., Roussel, A. M., Berr, C., et al. 2010. Plasma selenium and risk of dysglycemia in an elderly French population: results from the prospective epidemiology of vascular ageing study. Nutr Metab7: 21.
[94] Navarro-Alarcon, M., Cabrera-Vique, C. 2008. Selenium in food and the human body: A review. Sci Total Environ. 400 (1): 115-141.
[95] Tinggi, U. 2008. Selenium: Its role as antioxidant in human health. Environ. Health Preventive Medicine, 13 (2): 102-108.
[96] Csapo, J., Hollo, G., Hollo, I., Salamon, S., Toro, S. 2015. Production of selenium-enriched milk and dairy products. Acta Univ. Sapientiae, Alimentaria, 8 (2015) 5–29. DOI: 10.1515/ausal-2015-0001.
[97] Weaver, C. M., Davis, J., Marks, H. S., Sensmeier, R. K. 1988. Selenium content of processed soybeans. J Food Sci. 53: 300-301.
[98] Diaz-Alarcon, J. P., Navarro-Alarcon, M., Lopez, G., de la Serrana, H, Lopez-Martinez, M. C. 1994. Determination of selenium in fresh fish from southeastern Spain for calculation of daily dietary intake. J Agric Food Chem 42: 334-337.
[99] Jaffar, M., Ashraf, M. 1989. Selected trace metal concentrations in different tissues of fish from coastal waters of Pakistan Arabian Sea.. Ind J Mar Sci. 17: 231-234.
[100] Diaz-Alarcon, J. P. 1995. Determination of selenium in food, water and soil cultivation in Motril and relation area with input in the daily intake. Ph.D. Dissertation. Granada: University of Granada, 1995.
[101] Navarro-Alarcón, M., López-Martínez, M. C. 2000. Essentiality of selenium in the human body: Relationship with different diseases. Science of the Total Environment, 249 (1-3), pp. 347-371. DOI: 10.1016/S0048-9697 (99) 00526-4.
[102] Lyons, G., Stangoulis, J., Graham, R. 2003. Nutriprevention of disease with high-selenium wheat. J Australas Coll Nutr Environ Med. 22: 3-9.
[103] Ventura, M. G., Freitas, M. D., Pacheco, A., Van Meerten, T., Wolterbeek, H. T. 2007. Selenium content in selected Portuguese foodstuffs. Eur Food Res Technol. 224: 395–401.
[104] Navarro-Alarcon M., Cabrera-Vique, C. 2008. Selenium in food and the human body: A review. Sci Total Environ. 400 (1): 115-141.
[105] Sirichakwal, P. P., Puwastein, P., Polngam, J., Kongkachuichai, R. 2005. Selenium content of Thai foods. J Food Compos Anal. 18: 47–59.
[106] Dumont, E., Vanhaecke, F., Cornelis, R. 2006. Selenium speciation from food source to metabolites: A critical review. Anal Bioanal Chem. 385: 1304–23.
[107] Kapolna, E., Fodor, P. 2007. Bioavailability of selenium from selenium-enriched green onions (Allium fistulosum) and chives (Allium schoenoprasum) after ‘in vitro’ gastrointestinal digestion. Int J Food Sci Nutr. 58: 282–96.
[108] Manjusha, R., Dash, K., Karunasagar, D. 2007. UV-photolysis assisted digestion of food samples for the determination of selenium by electrothermal atomic absorption spectrometry (ETAAS). Food Chem. 105: 26–265.
[109] Pappa, E. C., Pappas, A. C., Surai, P. F., 2006. Selenium content in selected foods from the Greek market and estimation of the daily intake. Sci. Total Environ. 372 (1): 100-108.
[110] McNaughton, S. A., Marks, G. C. 2002.Selenium content of Australian foods: A review of literature values. J Food Compos Anal. 15: 169–82.
[111] Al-Ahmary, K. M. 2009. Selenium content in selected foods from the Saudi Arabia market and estimation of the daily intake, Arabian J. Chem. 2, (2): 95-99.
[112] Thomson, C. D. 2004. Assessment of requirements for selenium and adequacy of selenium status: A review. Eur J Clin Nutr. 58: 391–402.
[113] Oropeza-Moe, M., Wisl?ff, H., Bernhoft, A. 2015. Selenium deficiency associated porcine and human cardiomyopathies. J. Trace Elements Medicine Biol. 31 (2015) 148–156.
[114] Ralston, N. V. C., Raymond, L. J. 2010. Dietary selenium's protective effects against methylmercury toxicity. Toxicol. 278 (1): 112-123. DOI: 10.1016/j.tox.2010.06.004.
[115] Zhang, Z. W., Shimbo, S., Qu, J. B., Watanabe, T., Nakatsuka, H., Matsuda-Inoguchi, N., Higashikawa, K., Ikeda, M. 2001. Dietary selenium intake of Chinese adult women in the 1990s. Biol. Trace Element Res. 80 (2): 125-138. DOI: 10.1385/BTER: 80: 2: 125.
[116] Waegeneers, N., Thiry, C., De Temmerman, L., Ruttens, A. 2013. Predicted dietary intake of selenium by the general adult population in Belgium. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 30 (2): 278-285. DOI: 10.1080/19440049. 2012.7 46474.
[117] Oster, O., Prellwitz, W. 1989. The daily dietary selenium intake of West German adults. Biol Trace Elem Res. 20: 1. doi: 10.1007/BF02919093.
[118] Food and Nutrition Board (FNB). 2000. Dietary Reference Intakes: Vitamin C, Vitamin E, Selenium, and Carotenoids. Institute of Medicine, National Academy Press, Washington, DC.
[119] Levander, O. A., Morris, V. C. 1984. Dietary selenium levels needed to maintain balance in North American adults consuming self-selected diets. Am. J. Clin. Nutr., 39: 809–815.
[120] Han, L., Zhou, S. M. 1994. Selenium supplement in the prevention of pregnancy induced hypertension. Chinese Med. J. (in English), 107: 870–871.
[121] Kumpulainen, J., Salmenpera, L., Siimes, M. A., Koivistoinen, P., Perheentupa, J. 1985. Selenium status of exclusively breast-fed infants as influenced by maternal organic and inorganic selenium supplementation. Am. J. Clin. Nutr., 42: 929–835.
[122] Broadley, M. R., White, P. J., Bryson, R. J., Meacham, M. C., Bowen, H. C., Johnson, S. E., Hawkesford, M. J., McGrath, S. P., Zhao, F. J., Breward, N., Harriman, M., Tucker, M. 2006. Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society, 65 (2): 169-181. DOI: 10.1079/PNS2006490.
[123] Pilon-Smits, E. A. 2014. Engineering plant selenium accumulation: Potential uses and ecological impacts. Eds. Banuelos, Lin and Yin. In Selenium in the environment and human health. Taylor and Francis group, London, pp 217-218.
[124] Lyons, G. H., Stangoulis, J. C., Graham, R. D. 2004. Exploiting micronutrient interaction to optimize biofortification programs: The case for inclusion of selenium and iodine in the HarvestPlus program. Nutrition Rev. 62: 247–252.
[125] Li, Y., Li Y., Chen, D. 2003. Biological Functions of Selenium and the Mechanism of Selenium Enrichment in Plant. J. Hubei Agric. College 23: 476-480.
[126] LeDuc, D. L., AbdelSamie, M., Montes-Bayón, M., Wu, C. P., Reisinger, S. J., and Terry, N. 2006. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ. Pollut. 44: 70–76. doi: 10.1016/j.envpol.2006.01.008.
[127] Seppanen, M., Kontturi, J., Hartikainen, H. 2010. Biofortification of food chain with selenium. NJF report 6(2): 6-9.
[128] Pilon-Smits, E. A. H., Hwang, S. B., Lytle, C. M., Zhu, Y. L., Tai, J. C., Bravo, R. C., et al. 1999. Overexpression of ATP sulfurylase in Brassica juncea leads to increased selenate uptake, reduction and tolerance. Plant Physiol. 119: 123–132. doi: 10.1104/pp.119.1.123.
[129] Ellis, D. R., Sors, T. G., Brunk, D. G., Albrecht, C., Orser, C., Lahner, B., et al. 2004. Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol. 4:1–11. doi: 10.1186/1471- 2229-4-1.
[130] Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, et al. 2005. Molecular and biochemical characterization of the Selenocysteine Se-Methyltransferase gene and Se-Methylselenocysteine synthesis in broccoli. Plant Physiol. 138: 409-420.
[131] Ba?uelos, G., Terry, N., Leduc, D. L., Pilon-Smits, E. A., Mackey, B. 2005. Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39: 1771-1777.
[132] Van Huysen, T., Abdel-Ghany, S., Hale, K. L., LeDuc, D., Terry, N., et al. 2003. Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea. Planta 218: 71-78.
[133] Ip, C., Birringer, M., Block, E., Kotrebai, M., Tyson, J., Uden, P. C., Lisk, D. 2000. Chemical speciation influences comparative activity of seleniumenriched garlic and yeast in mammary cancer prevention. J. Agric. Food. Chem., 48: 2062–2070.
[134] Rahman, M. M., Erskine, W., Materne, M. A., McMurray, L. M., Thavarajah, P., Thavarajah, D., Siddique, K. H. M. 2015. Enhancing selenium concentration in lentil (Lens culinaris subsp. culinaris) through foliar application. J. Agric. Sci. 153 (4): 656-665. DOI: 10.1017/S0021859614000495.
[135] Wu, J., Salisbury, C., Graham, R., Lyons, G., Fenech, M. 2009. Increased consumption of wheat biofortified with selenium does not modify biomarkers of cancer risk, oxidative stress, or immune function in healthy Australian males. Environmental and Molecular Mutagenesis, 50 (6): 489-501. DOI: 10.1002/em.20490.
[136] Djuji?, I. S., Jozanov-Stankov, O. N., Milovac, M. Jankovi?, V., Djermanovi?, V. 2000. Bioavailability and possible benefits of wheat intake naturally enriched with selenium and its products. Biol Trace Elem Res (2000) 77 (3): 273-285. doi: 10.1385/BTER:77: 3: 273.
[137] Spadoni, M., Voltaggio, M., Carcea, M., Coni, E., Raggi, A., Cubadda, F. 2007. Bioaccessible selenium in Italian agricultural soils: Comparison of the biogeochemical approach with a regression model based on geochemical and pedoclimatic variables. Sci. Total Environ. 376: 160–177.
[138] Giacosa, A., Faliva, M. A., Perna, S., Minoia, C., Ronchi, A., Rondanelli, M. 2014. Selenium Fortification of an Italian Rice Cultivar via Foliar Fertilization with Sodium Selenate and Its Effects on Human Serum Selenium Levels and on Erythrocyte Glutathione Peroxidase Activity. Nutrients2014, 6, 1251-1261; doi:10.3390/nu6031251.
[139] Durán, P., Acu?a, J. J., Gianfreda, L., Azcón, R., Funes-Collado, V., Mora, M. L. 2015. Endophytic selenobacteria as new inocula for selenium biofortification. Applied Soil Ecology, 96: 319-326. DOI: 10.1016/j.apsoil.2015.08.016.
[140] Ceballos, A., Sánchez, J., Stryhn, H., Montgomery, J. B., Barkema, H.W., Wichtel, J.J. 2009. Meta-analysis of the effect of oral selenium supplementation on milk selenium concentration in cattle. J. Dairy Sci. 92:324–342.
[141] Yang, H., Jia, X. 2014. Safety evaluation of Se-methylselenocysteine as nutritional selenium supplement: Acute toxicity, genotoxicity and subchronic toxicity. Regulatory Toxicol. Pharmacol. 70 (3): 720-727. DOI: 10.1016/j.yrtph.2014.10.014.
[142] Bennett, D. C., Cheng, K. M. 2010. Selenium enrichment of table eggs. Poultry Sci. 89 (10): 2166-2172. DOI: 10.3382/ps.2009-00571.
[143] Fisinin, V. I., Papazyan, T. T., Surai, P. F. 2009. Producing selenium-enriched eggs and meat to improve the selenium status of the general population. Critical Rev. Biotechnol. 29 (1): 18-28. DOI: 10.1080/07388550802658030.
[144] Wang, Y. X., Zhan, X. A., Yuan, D., Zhang, X. W., Wu, R. J. 2011. Effects of selenomethionine and sodium selenite supplementation on meat quality, selenium distribution and antioxidant status in broilers. Czech J. Anim. Sci., 56, 2011 (7): 305–313.
[145] Pan, C., Zhao, Y., Liao, S.F., Chen, F., Qin, S., Wu, X., Zhou, H., Huang, K. 2011. Effect of selenium-enriched probiotics on laying performance, egg quality, egg selenium content, and egg glutathione peroxidase activity. J. Agric. Food Chem. 59 (21): 11424-11431. DOI: 10.1021/jf202014k.
[146] Mu?iz-Naveiro, ó., R. Domínguez-González, A. Bermejo-Barrera, P. BermejoBarrera, J. A. Cocho, and J. M. Fraga. 2006. Study of the bioavailability of selenium in cows’ milk after a supplementation of cow feed with different forms of selenium. Anal. Bioanal. Chem. 385: 189–196.
[147] Stockdale, C. R., Gill, H. S. 2011. Effect of duration and level of supplementation of diets of lactating dairy cows with selenized yeast on selenium concentrations in milk and blood after the withdrawal of supplementation. J. Dairy Sci. 94 (5): 2351-2359. DOI: 10.3168/jds.2010-3781.
[148] Gong, J., Ni, L., Wang, D., Shi, B., Yan, S. 2014.Effect of dietary organic selenium on milk selenium concentration and antioxidant and immune status in midlactation dairy cows. Livestock science 170: 84-90. http://dx.doi.org/10.1016/j.livsci.2014.10.003.
[149] Conrad, H. R., Moxon, A. L. 1979. Transfer of dietary selenium to milk. J. Dairy Sci. 62: 404–411.
Author Information
  • Agricultural and Environmental Services Laboratories, University of Georgia Cooperative Extension, Athens, USA

  • Independent Scholar, Ibadan, Nigeria

  • Department of Biotechnology, Fort Valley State University, Fort Valley, USA

  • Agricultural and Environmental Services Laboratories, University of Georgia Cooperative Extension, Athens, USA

Cite This Article
  • APA Style

    Uttam Saha, Abioye Fayiga, Bipul K. Biswas, Leticia Sonon. (2017). Selenium in Soil-Crop-Animal System: A Holistic Perspective to Manage Animal and Human Health. International Journal of Applied Agricultural Sciences, 3(3), 51-66. https://doi.org/10.11648/j.ijaas.20170303.11

    Copy | Download

    ACS Style

    Uttam Saha; Abioye Fayiga; Bipul K. Biswas; Leticia Sonon. Selenium in Soil-Crop-Animal System: A Holistic Perspective to Manage Animal and Human Health. Int. J. Appl. Agric. Sci. 2017, 3(3), 51-66. doi: 10.11648/j.ijaas.20170303.11

    Copy | Download

    AMA Style

    Uttam Saha, Abioye Fayiga, Bipul K. Biswas, Leticia Sonon. Selenium in Soil-Crop-Animal System: A Holistic Perspective to Manage Animal and Human Health. Int J Appl Agric Sci. 2017;3(3):51-66. doi: 10.11648/j.ijaas.20170303.11

    Copy | Download

  • @article{10.11648/j.ijaas.20170303.11,
      author = {Uttam Saha and Abioye Fayiga and Bipul K. Biswas and Leticia Sonon},
      title = {Selenium in Soil-Crop-Animal System: A Holistic Perspective to Manage Animal and Human Health},
      journal = {International Journal of Applied Agricultural Sciences},
      volume = {3},
      number = {3},
      pages = {51-66},
      doi = {10.11648/j.ijaas.20170303.11},
      url = {https://doi.org/10.11648/j.ijaas.20170303.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ijaas.20170303.11},
      abstract = {Selenium (Se) dependent enzymes play important roles in physiological functions such as thyroid hormone metabolism, strengthens anti-oxidant defense system and immune system. However, about 800 million people worldwide are believed to be deficient in Se which is attributed to low Se levels in the soil. This is because Se in plant and animal products in human diet depends upon the available Se in the soil. Deficiency of Se can be prevented or treated by adequate dietary intake or through direct supplementation. There have been reports that patients with dilated cardiomyopathy, HIV viral loads and cancer have responded to Se supplementation. However, food fortification has been found to be more efficient than supplementation. Both agronomic biofortification and genetic biofortification have been used to increase Se content of food crops and animal products. Genetic engineering makes use of key genes of Se hyperaccumulators to increase Se accumulating potential of food crops. Agronomic biofortification increases Se content of food crops by adding Se rich fertilizers to the soil or foliar application of Se. Selenium can also be added to animal diets or feedstuff to increase Se content of meat, eggs, and milk. Although inorganic forms of Se are approved as feed additives, they are less efficient than organic sources such as selenomethionine (SeMet) which is the dominant form in plants and animals. Animal products have been found to have higher Se content than plant products with fish having the highest Se content. Fruits and vegetables have a low content of Se probably because of their low protein content. Recommendations for dietary intake of Se vary with country, age and sex. There are concerns that the present recommended Se daily allowance may not be adequate due to discovery of other selenoenzymes with higher Se requirements than gluthathione peroxidase. There may be a need to review the current recommended daily allowance for Se in order to improve human health.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Selenium in Soil-Crop-Animal System: A Holistic Perspective to Manage Animal and Human Health
    AU  - Uttam Saha
    AU  - Abioye Fayiga
    AU  - Bipul K. Biswas
    AU  - Leticia Sonon
    Y1  - 2017/04/25
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ijaas.20170303.11
    DO  - 10.11648/j.ijaas.20170303.11
    T2  - International Journal of Applied Agricultural Sciences
    JF  - International Journal of Applied Agricultural Sciences
    JO  - International Journal of Applied Agricultural Sciences
    SP  - 51
    EP  - 66
    PB  - Science Publishing Group
    SN  - 2469-7885
    UR  - https://doi.org/10.11648/j.ijaas.20170303.11
    AB  - Selenium (Se) dependent enzymes play important roles in physiological functions such as thyroid hormone metabolism, strengthens anti-oxidant defense system and immune system. However, about 800 million people worldwide are believed to be deficient in Se which is attributed to low Se levels in the soil. This is because Se in plant and animal products in human diet depends upon the available Se in the soil. Deficiency of Se can be prevented or treated by adequate dietary intake or through direct supplementation. There have been reports that patients with dilated cardiomyopathy, HIV viral loads and cancer have responded to Se supplementation. However, food fortification has been found to be more efficient than supplementation. Both agronomic biofortification and genetic biofortification have been used to increase Se content of food crops and animal products. Genetic engineering makes use of key genes of Se hyperaccumulators to increase Se accumulating potential of food crops. Agronomic biofortification increases Se content of food crops by adding Se rich fertilizers to the soil or foliar application of Se. Selenium can also be added to animal diets or feedstuff to increase Se content of meat, eggs, and milk. Although inorganic forms of Se are approved as feed additives, they are less efficient than organic sources such as selenomethionine (SeMet) which is the dominant form in plants and animals. Animal products have been found to have higher Se content than plant products with fish having the highest Se content. Fruits and vegetables have a low content of Se probably because of their low protein content. Recommendations for dietary intake of Se vary with country, age and sex. There are concerns that the present recommended Se daily allowance may not be adequate due to discovery of other selenoenzymes with higher Se requirements than gluthathione peroxidase. There may be a need to review the current recommended daily allowance for Se in order to improve human health.
    VL  - 3
    IS  - 3
    ER  - 

    Copy | Download

  • Sections