Ampicillin Resistance in Haemophilus influenzae Isolated from Acute Respiratory Infections in Pediatrics
International Journal of Biomedical Engineering and Clinical Science
Volume 5, Issue 3, September 2019, Pages: 40-44
Received: Feb. 20, 2019; Accepted: Apr. 10, 2019; Published: Oct. 16, 2019
Views 476      Downloads 152
Abdoulaye Diop, Bacteriology and Virology Laboratory, Le Dantec Teaching Hospital, Dakar, Senegal
Assane Dieng, Bacteriology and Virology Laboratory, Le Dantec Teaching Hospital, Dakar, Senegal
Abdoulaye Seck, Medical Virology Unit, Institute Pasteur, Dakar, Senegal
Amary Fall, Medical Virology Unit, Institute Pasteur, Dakar, Senegal
Amadou Diop, Bacteriology and Virology Laboratory, Le Dantec Teaching Hospital, Dakar, Senegal
Djibril Boiro, Paediatric Unit, Abass NDAO Teaching Hospital, Dakar, Senegal
Jean Baptisse Niokhor Diouf, Paediatric Unit, Roi Baudouin Hospital, Dakar, Senegal
Modou Gueye, Paediatric Unit, Abass NDAO Teaching Hospital, Dakar, Senegal
Mbayame Niang, Medical Virology Unit, Institute Pasteur, Dakar, Senegal
Makhtar Camara, Bacteriology and Virology Laboratory, Le Dantec Teaching Hospital, Dakar, Senegal
Cheikh Saad Bouh Boye, Bacteriology and Virology Laboratory, Le Dantec Teaching Hospital, Dakar, Senegal
Article Tools
Follow on us
Haemophilus influenzae is a bacterium that can cause severe infections, occurring mostly in infants and children younger than five years of age. Antibiotic treatment may cause the emergence of resistant H. influenzae strains, particularly ampicillin-resistant strains. Antimicrobial resistance is a public health threat worldwide, particularly in the developing world. H. influenzae strains have been isolated from broncho-alveolar lavages (BALs), nasopharyngeal swabs, and otitis media from children in two paediatric centers at Dakar, Senegal. Antibiotic susceptibility testing was carried out using strips E Test ®t method that provides the ability to precisely determine the minimum inhibitory concentration (MIC). A total of 16 H. influenzae strains have been isolated and identified, including 16.7% of ampicillin-resistant patterns (all β-lactamase-negative), 9.4% of the isolates were resistant to cefaclor (MIC90 = 16 µg/ml) while 100% were susceptible to cefixime to (MIC90 = 0.38 µg/ml). Interestingly, fluoroquinolones were fully active with very low MIC90. Macrolide were still active against H. influenzae isoles although with higher MIC azitrhomycin MIC90= 3µg/ml, clarithromycin MIC90= 12µg/ml. Ampicillin-resistance has become increasingly reported in H. influenzae, suggesting a continuous laboratory based surveillance for antimicrobial resistance pattern for a better management of acute respiratory infections, particularly in low incomes settings.
Respiratory Tract Infections, Haemophilus influenzae, Ampicillin Resistance
To cite this article
Abdoulaye Diop, Assane Dieng, Abdoulaye Seck, Amary Fall, Amadou Diop, Djibril Boiro, Jean Baptisse Niokhor Diouf, Modou Gueye, Mbayame Niang, Makhtar Camara, Cheikh Saad Bouh Boye, Ampicillin Resistance in Haemophilus influenzae Isolated from Acute Respiratory Infections in Pediatrics, International Journal of Biomedical Engineering and Clinical Science. Vol. 5, No. 3, 2019, pp. 40-44. doi: 10.11648/j.ijbecs.20190503.12
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
S. Tristram, M. R. Jacobs, and P. C. Appelbaum (2007). Antimicrobial Resistance in Haemophilus influenzae Clin Microbiol. 20 (2): 368–389. DOI: 10.1128/CMR.00040-06 PMID: 17428889.
D. C. LUONG, N. Ishiwada, N. Takeda, and Y. Kohno (2004). Serotypes of Haemophilus influenzae strains isolated from pediatric patients with respiratory tract infections. Departement of pediatric, Graduate school of Medecine, Chiba University, Chiba 260-8670. Tohoku J. Exp. MED. 202: 245-254. PMID: 15109122.
K. K. Saikia, B. K. Das, R. K. Bewal, A. Kapil, N. K Arora, and S. Sood (2012). Characterization of nasopharyngeal isolates of type b Haemophilus influenzae from Delhi, Indian J Med Res. 136: 855-861. PMID: 23287135.
S. Maddi, U. Kolsum, S. Jackson, R. Barraclough, B. Maschera, K. D. Simpson, T. G. Pascal, S. Durviaux, E. M. Hessel, and D. Singh (2017). Ampicillin resistance in Haemophilus influenzae from COPD patients in the UK. International Journal of COPD. 12: 1507–1518. DOI: 10.2147/COPD.S135338 PMID: 28579769.
K. Ubukata, Y. Shibasaki, K. Yamamoto, N. Chiba, K. Hasegawa, Y. Takeuchi, K. Sunakawa, M. Inoue, and M. Konno M (2001). Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob. Agents Chemother. 45 (6): 1693–1699. doi: 10.1128/AAC.45.6.1693-1699.2001. PMID: 11353613.
M. Giufrè, L. Daprai, R. Cardines, P. Bernaschi, L. Ravà, M. Accogli, M. Raponi, M. L. Garlaschi, M. L. Ciofi degli Atti, and M. Cerquetti (2015). Carriage of Haemophilus influenzae in the oropharynx of young children and molecular epidemiology of the isolates after fifteen years of H. influenzae type b vaccination in Italy. Vaccine. 2015 Nov 17; 3 3 (46): 6227-34. doi: 10.1016/j.vaccine.2015.09.082. Epub 2015 Oct 9.
S. Garcia-Cobos, M. Arroyo, M. Perez-Vazquez, B. Aracil, N. Lara, J. Oteo, E. Cercenado, and J. Campos (2014). Isolates of b-lactamase-negative ampicillin-resistant Haemophilus influenzae causing invasive infections in Spain remain susceptible to cefotaxime and imipenem. J Antimicrob Chemother. 69: 111–116. doi: 10.1093/jac/dkt324.
G. Yahaoui, R. Hendi, and M. Mahmoud (2017). Epidemiology and strain sensitivity Assessment of Haemophilus influenzae isolated from low respiratory infections. International journal of innovation and Applied Studies. 20: 787-791.
S. García-Cobos, M. Arroyo, J. Campos, M. Pérez-Vázquez, B. Aracil, E. Cercenado, B. Orden, N. Lara, and J. Oteo (2013). Novel mechanisms of resistance to β-lactam antibiotics in Haemophilus parainfluenzae: β-lactamase-negative ampicillin resistance and inhibitor-resistant TEM β-lactamases. Journal of Antimicrobial Chemotherapy, Volume 68, Issue 5, 1 May 2013, Pages 1054–1059,
G. Şenol, and F. N. Eriş (2000). Haemophilus influenzae, Moraxella catarrhalis and Streptoccus pneumoniae strains isolated from respiratory infections and their resistance to antibiotics. Toraks Dergisi. 1: 46-50.
H. Uncu, S. Colakoglu, T. Turunç, Y. Z. Demiroglu, and H. GArslan (2007). In vitro resistance rates of Streptococcus pneumoniae and Haemophilus influenzae clinical isolates to the antibiotics used in therapy. Mikrobiyol. Bul. 41: 441-446.
Clinical and Laboratory Standards Institute (CLSI) (2006). Performance standards for antimicrobial susceptibility testing; 16th informational supplement. M100–S16. CLSI, Wayne, PA.
A. Gueye, C. S. B. Boye, H. Edwige, F. B. Gueye, A. Badiane (2009). Antimicrobial susceptibility of select respiratory tract pathogens in Dakar, Senegal. J Infect Dev Ctries. 3 (9): 660-6. PMID: 19858566.
D. Hoban, and D. Felmingham (2002). The Protekt surveillance study: antimicrobial susceptibility of Haemophilus influenzae and Moraxella catarrhalis from community-acquired respiratory tract infections. J. Antimicrob. Chemother. 50 (Suppl. S1): 49–59). PMID: 12239228.
B. Sener, F. Tunckanat, S. Ulusoy, A. Tunger, G. Soyletir, L. Mulazimoglu, N. Gurler, L. Oksuz, I. Koksal, K. Aydın, A. N. Yalcin, D. Ogunc, A. Acar, and J. Sievers (2007). A survey of antibiotic resistance in Streptococcus pneumoniae and Haemophilus influenzae in Turkey, 2004–2005. Journal of Antimicrobial Chemotherapy 60, 587–593. doi: 10.1093/jac/dkm232 PMID: 17597058.
S. Garcia-Cobos, J. Campos, E. Lazaro, F. Román, E. Cercenado, C. Garcia-Rey, M. Pérez-Vázquez, J. Oteo, and F. de Abajo et al (2007). Ampicillin-resistant non-beta-lactamase- producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother 2007; 51: 2564-73.
T. Bastida, M. Perez-Vazquez, J. Campos J, M. C. Cortés-Lletget, F. Román, Fe Tubau, A. G. de la Campa, and C. Alonso-Tarrés (2003). Levofloxacin treatment failure in Haemophilus influenzae pneumonia. Emerg Infect Dis 2003; 9: 1475-8.
F. Roman, R. Canton, M. Perez-Vazquez, F. Baquero, and J. Campos (2004). Dynamics of long-term colonization of respiratory tract by Haemophilus influenzae in cystic fibrosis patients shows a marked increase in hypermutable strains. J Clin Microbiol 2004; 42: 1450-9.
R. Cardines, M. Giufrè, A. Pompilio, E. Fiscarelli, G. Ricciotti, G. D. Bonaventura, and M. Cerquetti (2012). Haemophilus influenzae in children with cystic fibrosis: Antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. Int. J. Med. Microbiol. 302, 45-52.
S. J. Phaff, H. A. Tiddens, H. A. Verbrugh, and A. Ott (2006). Macrolide resistance of Staphylococcus aureus and Haemophilus species associated with long-term azithromycin use in cystic fibrosis. J Antimicrob Chemother 2006; 57: 741-6.
E. Varon, C. Janoir, L. Gutmann (2014). CNRP-Rapport d’activité 2014-Epidémiologie 2013 [Internet]. 2014 [cited 2016 Mar 28]. Available from:
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186