Πgβ-connectedness in Intuitionistic Fuzzy Topological Spaces
Mathematics Letters
Volume 3, Issue 6, December 2017, Pages: 65-70
Received: Oct. 5, 2017; Accepted: Oct. 25, 2017; Published: Nov. 23, 2017
Views 1586      Downloads 84
Authors
T. Jenitha Premalatha, Department of Mathematics, Tips Global Institute, Coimbatore, India
S. Jothimani, Department of Mathematics, Government Arts College, Coimbatore, India
Article Tools
Follow on us
Abstract
The paper aspires to discuss the basic properties of connected spaces. Also the concept of types of intuitionistic fuzzy πgβ-connected and disconnected in intuitionistic fuzzy topological spaces are introduced and studied. The research paper of topological properties is introducedby making the idea of being connected. It turns out to be easier to think about the property that is the negation of connectedness, namely the property of disconnectedness and separable. Also the concepts of intuitionistic fuzzy πgβC5-connectedness, intuitionistic fuzzy πgβCS-connectedness, intuitionistic fuzzy πgβCM-connectedness, intuitionistic fuzzy πgβ-strongly connectedness, intuitionistic fuzzyπ β-super connectedness and obtain several properties and some characterizations concerning connectedness in these spaces are explored.
Keywords
Intuitionistic Fuzzy Connected, Intuitionistic Fuzzy πgβ-connected, Intuitionistic Fuzzy πgβC5-connectedness, Intuitionistic Fuzzy πgβCS-connectedness, Intuitionistic Fuzzy πgβCM-connectedness, Intuitionistic Fuzzy πgβ-Super Connectedness and Intuitionistic Fuzzy πgβ–strongly Connected
To cite this article
T. Jenitha Premalatha, S. Jothimani, Πgβ-connectedness in Intuitionistic Fuzzy Topological Spaces, Mathematics Letters. Vol. 3, No. 6, 2017, pp. 65-70. doi: 10.11648/j.ml.20170306.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud- β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
[2]
M. E. Abd EI-Monsefand R. A. Mahmoud, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27(1990), 285-296.
[3]
A. V. Arhangels´kii, R. Wiegandt. Connectedness and disconnectedness in topology. Top. Appl 1975,5.
[4]
Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, 87-96.
[5]
C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl.24(1968) 182–190.
[6]
S. Ozcagand D. Coker, Onconnectedness inintuitionistic fuzzyspecialtopological spaces, Inter. J. Math. Math. Sci. 21 (1998) 33-40.
[7]
T. JenithaPremalatha, S. Jothimani–Intuitionistic fuzzy πgβ closed set- Int. J. Adv. Appl. Math. andMech. 2(2)(2014)92-101.
[8]
M. S. Sarsak, N. Rajesh, π-Generalized Semi-Pre closedSets, Int. Mathematical Forum 5(2010)573-578.
[9]
Sucharita Chakrabarti, Hiranmay Dasgupta, International Mathematical Forum, Vol. 8, 2013, no. 38, 1889-1901.
[10]
S. Thakur and R. Chaturvedi, Regular generalized closed sets inintuitionisitc fuzzy topological spaces, Universitatea Din Bacau, Studii Si CercetariStiintifice, Seria:Mathematica 16 (2006) 257–272.
[11]
N. Turnali and D. Coker Fuzzy connectedness in intuitionistic fuzzy topological spaces, Fuzzy SetsandSystems 116 (2000)369–375.
[12]
L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965)338–353.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186