Ab initio Theory of Elastic Properties of Rare-Gas Crystals Under High Pressure
Journal of Photonic Materials and Technology
Volume 1, Issue 3, November 2015, Pages: 46-61
Received: Jan. 22, 2016; Accepted: Jan. 25, 2016; Published: Feb. 19, 2016
Views 3395      Downloads 171
Authors
Elena P. Troitskaya, Galkin Institute for Physics & Engineering, Donetsk, Ukraine
Vladimir V. Rumyantsev, Galkin Institute for Physics & Engineering, Donetsk, Ukraine; Mediterranean Institute of Fundamental Physics, Marino, Rome, Italy
Ekaterina A. Pilipenko, Galkin Institute for Physics & Engineering, Donetsk, Ukraine
Ievgen Ie. Gorbenko, Department of Physics and Nanotechnology of Institute of Physics, Mathematics and Information Technology, Lugansk Taras Shevchenko National University, Lugansk, Ukraine
Article Tools
Follow on us
Abstract
The quantum mechanical model of deformable and polarizable atoms has been developed for the research of the elastic properties of rare-gas crystals Ne, Ar, Kr, and Xe over a wide range of pressure. It is shown that it is impossible to reproduce the observed deviation from the Cauchy relation δ(p) for Ne, Kr, Xe adequately taking into account the many-body interaction only. The individual dependence δ(p) for each of the crystals is the result of two competing interactions, namely, the many-body interaction and the electron-phonon interaction, which manifests itself in a quadrupole deformation of atoms electron shells due to displacements of the nuclei. The contributions of these interactions to Ne, Kr, and Xe compensated each other with high precision that provides δ with a positive value which is weakly dependent on pressure. In case of Ar the many-body interaction prevails. The compressed Ar has a negative deviation from the Cauchy relation the absolute value of which increases with the rise of pressure. The consideration of the quadrupole deformation is of great importance for heavy rare-gas crystals Kr and Xe. The represented ab initio calculated dependences of Birch elastic moduli Bij(p) and δ(p) are in good agreement with the experiment.
Keywords
Rare-Gas Crystals, High Pressure, Many-Body Interaction, Quadrupole Deformation of the Atomic Electron Shells
To cite this article
Elena P. Troitskaya, Vladimir V. Rumyantsev, Ekaterina A. Pilipenko, Ievgen Ie. Gorbenko, Ab initio Theory of Elastic Properties of Rare-Gas Crystals Under High Pressure, Journal of Photonic Materials and Technology. Vol. 1, No. 3, 2015, pp. 46-61. doi: 10.11648/j.jmpt.20150103.11
Copyright
Copyright © 2015 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
T. Tsuchiya, K. Kawamura, “First-principles study of systematics of high-pressure elasticity in rare gas solids, Ne, Ar, Kr, and Xe”, J. Chem. Phys., vol. 117, pp. 5859-5865, September 2002.
[2]
E. Pechenic, I. Kelson, G. Makov, “Many-body model of rare gases at high pressures”, Phys. Rev. B, vol. 78, 134109, October 2008.
[3]
M. Aoki, T. Kurokawa, “A simple environment-dependent overlap potential and Cauchy violation in solid argon”, J. Phys.: Condens. Matter, vol. 19, 236228, May 2007.
[4]
T. Iitaka, T. Ebisuzaki, “First principles calculation of elastic properties of solid argon at high pressures”, Phys. Rev. B., vol. 65, 012103, October 2001.
[5]
L. Verlet, “Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev. Vol. 159, pp. 98-103, July 1967.
[6]
A. B. Belonoshko, R. Ahuja, B. Johansson, “Molecular Dynamics Study of Melting and fcc-bcc Transitions in Xe”, Phys. Rev. Lett., vol. 87, 165505, October 2001.
[7]
F. Occeli, M. Krisch, P. Loubeyre, F. Sette, R. Le Toullec, C. Masciovecchio, J. P. Rueff, “Phonon dispersion curves in an argon single crystal at high pressure by inelastic x-ray scattering”, Phys. Rev. B vol. 63, 224306, May 2001.
[8]
R. Ramirez, C. P. Herrero, “Anhormonic phonon energies in rare-gas solids derived by path-integral simulations”, Phys. Rev. B, vol. 72, 024303, July 2005.
[9]
J. S. Tse, V. P. Shapakov, and V. R. Belostudov, “High-pressure elastic constants of solid krypton from quasiharmonic lattice-dynamics calculations”, Phys. Rev. B, vol 58, 2365 August 1998.
[10]
S. Sasaki, N. Wada, T. Kumi, H. Shimizu, “High-pressure Brillouin study of the elastic properties of rare-gas solid xenon at pressures up to 45 GPa”, J. Raman Spectroscopy, vol. 40, pp. 121-128, July 2009.
[11]
H. Shimizu, N. Saitoh, S. Sasaki, “High-pressure elastic properties of liquid and solid krypton to 8 GPa”, Phys. Rev. B., vol. 57, pp. 230–233, January 1998.
[12]
H. Shimizu, H. Tashiro, T. Kume, S. Sasaki, “High-pressure Elastic Properties of Solid Argon to 70 GPa”, Phys. Rev. Lett., vol. 86, pp. 4568-4571, May 2001.
[13]
H. Shimizu, H. Imaeda, Т. Kume, S. Sasaki, “High-pressure elastic properties of liquid and solid neon to 7 GPa”, Phys. Rev. B., vol. 71, 014108, January 2005.
[14]
W. S. Gornall, B. P. Stoicheff, “Determination of the Elastic Constants of Xenon Single Crystals by Brillouin Scattering” Phys. Rev. B vol. 4, 4518, December 1971.
[15]
M. Grimsditch, P. Loubeyre, and A. Polian, “Brillouin scattering and three-body forces in argon at high pressures” Phys. Rev. B vol. 33, 7192, May 1986.
[16]
A. Polian, J. V. Besson, M. Grimsditch, and W. A. Grosshans, “Solid krypton: Equation of state and elastic properties”, Phys. Rev. В vol. 39, 1332, January 1989.
[17]
M. S. Anderson and C. A. Swenson, “Experimental equations of state for the rare gas solids” J. Phys. Chem. Solids vol.36, pp 145-162, May 1975.
[18]
R. J. Hemley and H. K. Ashcroft, “The revealing role the pressure in the condensed mater sciences” Phys. Today vol. 51, pp. 26 -32, August 1998.
[19]
V. G. Bar’yakhtar, E. V. Zarochentsev, and E. P. Troitskaya, Theory of Adiabatic Potential and Atomic Properties of Simple Metals (Gordon & Breach, London, 1999), p. 320.
[20]
P. Loubeyre, “Three-body exchange interaction in dense rare gases”, Phys. Rev. B vol. 37, pp. 5432-5439, April 1988.
[21]
J. Kwon, L. A. Collins, J. D. Kress, N. Troullier, “First–principles study of solid Ar and Kr under high compression”, Phys. Rev. B., vol. 52, pp. 15165–15169, December 1995.
[22]
Yu. A. Freiman, S. M. Tretyak, “Many-body interactions and high-pressure equations of state in rare-gas”, Low Temp. Phys, vol. 33, pp. 719-727, December 2007.
[23]
А. Herpin, “Les Forces de polarisabilite dans les cristaux”, J. Phys. Rad., vol. 14, pp. 611-619, 1953.
[24]
K. B. Tolpygo, “The physical properties of lattice rocksalt type constructed of deformed ions”, Zh. Eksper. Teor. Fiz. vol. 20, pp. 497-510, June 1950.
[25]
K. B Tolpygo, “Exchange-quadrupole forces and phonon dispersion for the simplest cubic crystals”, Phys. Stat. Sol. (b), vol. 56, pp. 591-601, April 1973.
[26]
K. B. Tolpygo, E. P. Troitskaya, “Distribution of the dynamic theory of crystal lattices with the deformed atoms on the crystals of the zero group elements” Fiz. Tverd. Tela (Leningrad), vol. 13, pp. 1135-1144, April 1971; Sov. Phys. Solid State 13, 939, 1971.
[27]
B. G. Dick, A. W. Overhauser, “Theory of the dielectric constants of alkali halide crystals”, Phys. Rev., vol. 112, pp. 90-103, October 1958.
[28]
W. Cochran, “Theory of the lattice vibrations of germanium”, Proc. Roy. Soc. (London), vol. A253, pp. 260-276, November 1959.
[29]
К. B. Tolpygo, “Long-range forces and dynamics equations covalent type crystals diamond” Sov. Phys. Solid State 3, pp. 943-956, April 1961.
[30]
К. B. Tolpygo, “The microscopic theory of electron states in polar crystals”, Ukr. Fiz. Zh. vol. 2, pp. 242-261, February 1957.
[31]
V. Abarenkov and I. M. Antonova, in: Quantum Mechanical Cluster Calculations in Solid State Studies, Vol. 5 (World Scientific Publ. Co., Singapore, 1991), No. 2–3, pp. 63–78.
[32]
О. N. Bolonin and К. B. Tolpygo, “Quadrupole deformation of atoms in the lattice dynamics of solids noble-gas”, Fiz. Tverd. Tela (Leningrad), vol. 15, pp. 1674-1682, June 1973; Sov. Phys. Solid State, vol. 15, pp. 1124, 1973.
[33]
V. N. Varyukhin, Е. P. Troitskaya, V. V. Chabanenko, I. V. Zhikharev, E. E. Gorbenko, E. A. Pilipenko, “Lattice dynamic theory of compressed rare-gases crystals in the deformed atom model” arXiv: 1203.3040.
[34]
V. N. Varyukhin, E. P. Troitskaya, V. V. Chabanenko, Ie. Ie. Gorbenko, E. A. Pilipenko, “Ab initio theory of the many-body interaction and elastic properties of rare-gas crystals under pressure”, Phys. Status Solidi B., vol. 251, pp. 774–787, December 2014.
[35]
Е. P. Troitskaya, Val. V. Chabanenko, I. V. Zhikharev, and Ie. Ie. Gorbenko,” Ab initio theory of many-body interaction and Cauchy relations in compressed rare-gas crystals”, Phys. Solid State 53, 1634-1643, November 2011.
[36]
К. B. Tolpygo and Е. P. Troitskaya, “Short-range forces in crystals elements zero group”, Fiz. Tverd. Tela (Leningrad), vol. 17, pp. 102-110, January 1975; Sov. Phys. Solid State vol. 17, 58, 1975.
[37]
F. Clementi, C. Roetti “Roothan Hartree-Fock atomic wave functions” At. data nucl. data table. vol. 14, N 3-4, pp. 177–478, September 1974.
[38]
Ie. Ie. Horbenko, I. V. Zhikharev, E. P. Troitskaya, Val. V. Chabanenko, and N. V. Kuzovoi, “Ab initio calculations of three-body interactions in cryocrystals under pressure”, Low Temp. Phys., vol. 37, pp. 445-451, May 2011.
[39]
R. A. Aziz, M. J. Slaman, “The Ne-Ne interatomic potential revisited”, Chem. Phys., vol. 130, pp. 187-194, August 1989.
[40]
M. M. Neuman, M. Zoppi, “Path-integral Monte Carlo simulations of solid neon at room temperature” Phys. Rev B., vol. 62, pp. 41-44, July 2000.
[41]
L. F. Silvera, V. V. Goldman, “The isotropic intermolecular potential for H2 and D2 in the solid and gas phases”, J. Chem. Phys., vol. 69, pp. 4209-4213, November 1978.
[42]
M. Born and K. Huang, “Dynamical theory of crystal lattices”, Claredon, Oxford, 1954.
[43]
E. P. Troitskaya, Val. V. Chabanenko, I. V. Zhikharev, Ie. Ie. Gorbenko, and E. A. Pilipenko, “Quadrupole deformation of electron shells in the lattice dynamics of compressed rare-gas crystals” Phys. Solid State, vol. 54, pp. 1254-1262, November 2012.
[44]
D. Wallace, “Thermoelastic theory of stressed crystals and higher-order elastic constants”, Solid State Phys, vol. 25, pp. 301–404, 1970.
[45]
F. Birch, “Finite elastic strain of cubic crystals”, Phys. Rev., vol. 71, pp. 809-824, June 1974.
[46]
E. V. Zarochentsev, V. N. Varyukhin, E. P. Troitskaya, Val. V. Chabanenko, E. E. Horbenko, ”Interatomic potential and elastic constants of rare-gas crystals under pressure”, Phys. Status Solidi b, vol. 243, pp. 2672-2686, Jule 2006.
[47]
B. M. Axilrod and E. Teller, “Interaction of the van der Waals type between three atoms” J. Chem. Phys. Vol. 11, pp. 299-230, June 1943.
[48]
Е. P. Troitskaya, Val. V. Chabanenko, I. V. Zhikharev, Ie. Ie. Gorbenko, and Е. А. Pilipenko, “Elastic properties of compressed crystalline ne in the model of deformable atoms” Phys. Solid State vol. 55, pp. 389–395 June 2013.
[49]
K. Rosciszewski, B. Paulus, P. Fulde, Н. Stoll, “Ab initio calculation of ground-state properties of rare-gas crystals” Phys. Rev. B, vol. 60, pp. 7905-7910, September 1999.
[50]
Е. P. Troitskaya, Val. V. Chabanenko, Е. А. Pilipenko, I. V. Zhikharev, and Ie. Ie. Gorbenko, “Elastic properties of heavy rare-gas crystals under pressure in the model of deformable atoms” Phys. Solid State vol. 55, pp. 2335–2344, November 2013.
[51]
K. A. Goettel, J. H. Eggert, I. F. Silvera, and W. C. Moss, “Optical Evidence for the Metallization of Xenon at 132(5) GPa”, Phys. Rev. Lett., vol. 62, pp. 665-668, February 1989.
[52]
N. H. March, in: Advances in high pressure research. V. 3, Ed. R. S. Bradley. Academic Press, N. Y. (1969). P. 241.
[53]
Е. V. Zarochentsev and Е. P. Troitskaya, “The forbidden gap and insulator–metal transition under pressure”, Phys. Solid State vol. 44, pp. 1370-1379, April 2002.
[54]
M. I. Eremets, E. A. Gregoryanz, V. V. Struzhkin, H. K. Mao, R. J. Hemley, N. Mulders, and N. M. Zimmerman, “Electrical Conductivity of Xenon at Megabar Pressures”, Phys. Rev. Lett., vol. 85, pp. 2797-2800, September 2000.
[55]
S. K. Jain, G. P. Srivastava, “Effect of polarieability on the vibrational and thermal properties of rare gas solids”, Can. J. Phys., vol. 56, pp. 849-858, December 1978.
[56]
V. Nusslein, U. Schroder, “Calculations of dispersion curves and specific heat for Li and NaCl using the breathing shell model”, Phys. Stat. Sol., vol. 21, pp. 309-314, January 1967.
[57]
Е. P. Troitskaya, Val. V. Chabanenko, Е. Е. Horbenko, “Nonadiabatic effects in the lattice dynamics of compressed noble-gas crystals” Phys. Solid State, vol. 47, pp. 1748-1754, November 2005.
[58]
Е. P. Troitskaya, Val. V. Chabanenko, and Е. Е. Gorbenko, “Elementary vibrations in rare-gas crystals: frequencies of phonons in compressed Argon, Krypton, and Xenon crystals” Phys. Solid State, vol. 48, pp. 741-746, May 2006.
[59]
Е. P. Troitskaya, Val. V. Chabanko, and Е. Е. Horbenko, “Phonons and electron–phonon interactions in rare-gas crystals at high pressures” Phys. Solid State, vol. 49, 2154-2162, March 2007.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186