Philosophy of Weibel Instability in Laser Fusion Plasma
Journal of Photonic Materials and Technology
Volume 4, Issue 1, June 2018, Pages: 15-18
Received: Jan. 18, 2018; Accepted: Feb. 5, 2018; Published: Feb. 28, 2018
Views 1019      Downloads 57
Authors
Slimen Belghit, Faculty of Material Sciences, University of Batna, Batna, Algeria
Beddiaf Zaidi, Faculty of Material Sciences, University of Batna, Batna, Algeria
Oussama Boultif, Faculty of Material Sciences, University of Batna, Batna, Algeria
Abdelaziz Sid, Faculty of Material Sciences, University of Batna, Batna, Algeria
Article Tools
Follow on us
Abstract
In this work, have put forward a philosophy of the Weibel instability in laser fusion plasma; these instabilities generated by several mechanisms, namely: the heat transport, the expansion of the plasma and the inverse bremsstrahlung absorption (IB). Several research papers have been presented as well as theoretical models for the relaxation and stability of these modes, which are considered to be very flammable and peaceful on the interaction yield between lasers and plasma. To resolve these modes must be combined with the magnetic field. The stabilization effect due to the coupling of the self-generated magnetic field by Weibel instability with the laser wave field is explicitly showed in recently paper. In these studies, the relativistic and non-relativistic or linear and non-linear effects are taken into account here; the basic equation is the Fokker-Planck (F-P) or Vlasov equation. The best result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes in the all states. Found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of orders in the growth rate of instability or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB have overestimated the values of the generated magnetic fields.
Keywords
Relativistic and Non-relativistic Weibel Instability, Laser Fusion Plasma, Static Magnetic Field, Stabilization, Laser Plasma Interaction
To cite this article
Slimen Belghit, Beddiaf Zaidi, Oussama Boultif, Abdelaziz Sid, Philosophy of Weibel Instability in Laser Fusion Plasma, Journal of Photonic Materials and Technology. Vol. 4, No. 1, 2018, pp. 15-18. doi: 10.11648/j.jmpt.20180401.13
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).
[2]
A. Bendib, K. Bendib and A. Sid, Phys. Rev. E55, 7522 (1997).
[3]
K. Bendib, A. Bendib and A. Sid, Laser and Particle Beams 16, 3 (1998).
[4]
S. Belghit and A. Sid, Pramana – J. Phys, 87:96 (2016).
[5]
S. Belghit and A. Sid, Physics of Plasmas 23, 063104 (2016).
[6]
A. B. Langdon, Phys. Rev. Lett. 44, 575 (1980).
[7]
A. Sid, Physics of Plasmas, 1, 214 (2003).
[8]
L. Bhatanagar, E. P. Gross, M. Krook, phys, Rev, 94,511(1954).
[9]
I. P. Shkarofsky, T. W. Johnston and M. P. Bachynski, The particule Kinetic of Plasmas, (Addison-Wesley) 1966.
[10]
K. Nishikawa, P. Hardee, G. Richardson, R. Preece, H. Sol and G. Fishman, Astrophysical Journal, 595(1), 555–563 (2003).
[11]
L. O. Silva, R. A. Fonseca, J. W. Tonge, J. M. Dawson, W. B. Mori and M. V. Medvedev, The Astrophysical Journal, 596(1), L121–L124 (2003).
[12]
R. C. Davidson and P. H. Yoon, Phys. Fluids B 1, 195 (1989).
[13]
U. S. Rolffs, I. Lerche, R. Schlickeiser, Physics of plasmas, 1070-664X,13 (2006).
[14]
F. Califano, T. Cecchi, and C. Chiuderi, Phys. Plasmas 1070-664X,9, 451 (2002)
[15]
S. I. Braginski, in (M. A. Leonvitch, Consultant Bureau) N. Y.1965.
[16]
S. Belghit and A. Sid, Elixir Nuclear & Radiation Phys. 90, 37561-37564 (2016)
[17]
S. Belghit, A. Sid and K. Bendib, International Journal of Physics, Vol. 2, No. 6, 226-230,2014.
[18]
D. Pesme, La fusion thermonucléaire contrôlée par laser, Ed. R. Dautrey et J. P. Watteau (Eyrolles, Paris 1993).
[19]
J. D. Lindl, R. L. McCroy and E. M. Campbell, Progress towards and burn propagation in inertiel confinement fusion, Phys. Today, 34, (1992).
[20]
R. C. Tautz, I. Lerche, the Astrophysical Journal. HE, 1003-1055, v2, 2010
[21]
Mikhail V. Medvedev, the Astrophysical Journal. HE, 1705.03169, v1, 2017
[22]
P. Alaterre, J. P. Matte and M. Lamoureux, Phys. Rev. A 34, 1578 (1986).
[23]
J. P. Matte, M. Lamoureux, C. Moller, R. Y. Yin, J. Delletrez, J. Virmont and T. W. Johnston, Plasma Phys. Controlled Fusion 30, 1665 (1988).
[24]
S. Zaheer and G. Murtaza, PHYSICS OF PLASMAS 14, 072106, (2007)
[25]
J. D. Lindl, R. L. McCroy and E. M. Campbell, Progress towards and burn propagation in inertiel confinement fusion, Phys. Today, 34, (1992).
[26]
P. Alaterre, J. P. Matte and M. Lamoureux, Phys. Rev. A 34, 1578 (1986).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186