Four-Body Scattering of Light as a Method of Detection of Bose-Einstein Condensate of Excitons
Journal of Photonic Materials and Technology
Volume 4, Issue 1, June 2018, Pages: 39-48
Received: Apr. 16, 2018; Accepted: May 3, 2018; Published: May 31, 2018
Views 792      Downloads 37
Authors
Yuri D. Zavorotnev, Department of Theory of Complex Systems Dynamic Properties, Galkin Institute for Physics & Engineering, Donetsk, Ukraine
Vladimir V. Rumyantsev, Department of Theory of Complex Systems Dynamic Properties, Galkin Institute for Physics & Engineering, Donetsk, Ukraine; Mediterranean Institute of Fundamental Physics, Marino, Rome, Italy
Olga Yu. Popova, International Economics and Marketing Department, Donetsk National Technical University, Pokrovsk, Ukraine
Article Tools
Follow on us
Abstract
Process of four-particle light scattering in molecular crystals with participation of the exciton Bose-condensate is considered. The intensities and tensor of scattering are found for this effect. The frequency and polarization characteristics of this process are studies. It is shown that the investigation of the spectrum shapes of scattered radiation allows one to find and prove the existence of the Bose-Einstein condensate of excitons.
Keywords
Molecular Crystal, Four-Particle Light Scattering, Exciton, Polaritons, Bose-Einstein Condensate
To cite this article
Yuri D. Zavorotnev, Vladimir V. Rumyantsev, Olga Yu. Popova, Four-Body Scattering of Light as a Method of Detection of Bose-Einstein Condensate of Excitons, Journal of Photonic Materials and Technology. Vol. 4, No. 1, 2018, pp. 39-48. doi: 10.11648/j.jmpt.20180401.17
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
A. Einstein, “Quantentheorie des Einatomigen idealen gases I”. Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl, v. 22, pp. 261–267, 1924
[2]
A. Einstein, “Quantentheorie des Einatomigen idealen gases II”. Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl, v. 1, pp. 3–14, 1925.
[3]
M. N. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor”, Science, v. 260, pp. 198-201, 1995.
[4]
A. J. Legget, “Bose–Einstein condensation in the alkali-gases: Some fundamental concepts”, Rev. Mod. Phys., v. 73, pp. 307–356, 2001.
[5]
W. Ketterle. “Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser”, Rev. Mod. Phys., v. 74, pp. 1131-1151, October 2002.
[6]
William J. Mullin, Asaad R. Sakhel, “Generalized Bose-Einstein Condensation”, J. Low Temp. Phys., vol. 166, pp. 125-150, February 2012.
[7]
S. A. Moskalenko, D. W. Snoke. Bose – Einstein condensation of excitons and biexcitons and coherent nonlinear optics with excitons. Cambridhe University Press, Cambridhe, 2000
[8]
Tim Byrnes, Na Young Kim and Yoshihisa Yamamoto, "Exciton–polariton condensates", Nature Physics, v. 10, pp. 803-, 2014.
[9]
Christopoulos, S. et al. “Room-temperature polaritonlasing in semiconductor microcavities”. Phys. Rev. Lett. 98, 126405 (2007).
[10]
Baumberg, J. J. et al. “Spontaneous polarization buildupin a room-temperature polariton laser”. Phys. Rev. Lett., v. 101, 136409, 2008.
[11]
Kena-Cohen, S. k Forrest, S. R., “Room-temperaturepolariton lasing in an organic single-crystal microcavity”, Nature Photonics, v. 4, pp. 371–375, 2010.
[12]
Guillet, T. et al. “Polariton lasing in a hybrid bulk ZnO microcavity”. Appl. Phys. Lett., v. 99, 161104, 2011.
[13]
C. Liang, K. Wei, B. J. Ye, H. M. Wen, X. Y. Zhou, R. D. Han,“Green’s function method to the ground state properties of a two-component Bose–Einstein condensate”, Low Temperature Physics, v. 37, pp. 561- 567, July 2011.
[14]
V. B. Timofeev, A. V. Gorbunov and D. A. Demin, “Bose-Einstein condensation of dipolar excitons in lateral traps”, Low Temperature Physics, v. 37, pp. 179-188, March 2011.
[15]
C. Т. Belyaev. “Application of the methods of quantum field theory to a system of Bose particles”, Sov. Phys. JETP, v. 34, pp. 417-432, 1958.
[16]
S. A. Moskalenko, M. A. Liberman, E. S. Moskalenko, E. V. Dumanov, I. V. Podlesny, “Coherence of two-dimensional electron-hole systems: Spontaneous breaking of continuous symmetries: A review”, Physics of the Solid State, v. 55, pp. 1563-1595, August 2013.
[17]
B. L. Halperin, P. A. Lee, N. Read. “Theory of the Half-filled Landau Level”, Phys. Rev. B, v. 47, pp, 7312- 7343, March 1993.
[18]
L. V. Keldysh, Yu. V. Kopayev. “Possible instability of semimetallic state with respect to Coulomb interection”, Physics of the Solid State, v. 6, pp. 2791-2798, 1964.
[19]
G. Batyev, V. M. Kovalev, A. V. Chaplik, “Response of a Bose-Einstein condensate of dipole excitons to static and dynamic perturbations“, JETP Letters, v. 99, pp. 540-551, July 2014.
[20]
Yu. D. Zavorotnev, O. Yu. Popova, “Polariton Spectrum Subject to Bose-Einstein Condensate of Excitons”, Journal of Photonic Materials and Technology, v. 1, pp. 10-14, July 2015.
[21]
Jesus Martinez-Linares, G. S. Agarwal. “Raman scattering from a Bose condensate”, Phys. Rev. A, v. 57, pp. 2931-2937, April 1998.
[22]
Yu. D. Zavorotnev, L. N. Ovander. “Raman scattering with participation of the Bose-Einstein condensate of excitons”. Bulletin of the Russian Academy of Sciences: Physics, v. 69, pp. 984-987, July 2005.
[23]
Yu. E. Lozovik, A. V. Pushnov, “New method for detection of exciton Bose condensation using stimulated two-photon emission”, JETP, vol. 88, pp. 747-760, April 1999.
[24]
Yu. E. Lozovik, I. V. Ovchinnikov, “Stimulated multiphoton emission from exciton Bose condensate”, JETP Letters, v. 75, pp. 507–512, May 2002.
[25]
L. N. Ovander, “Nonlinear optical effects in crystals”, Sov. Phys. Usp, v. 8, pp. 337-359, August 1965.
[26]
Yu. D. Zavorotnev, L. N. Ovander. “К теории ГКР”, Physics of the Solid State, v. 16, pp. 2387-2392, 1974.
[27]
N. Bloembergen. Nonlinear optics/ 4th edition. Word Scientific Publishing Co, London, 1996. 173p.
[28]
V. M. Agranovich, “Effects of the internal field in the spectra of molecular crystals and the theory of excitons”, Sov. Phys. Usp., v. 17, pp. 103-117, 1974.
[29]
V. M. Agranovich, “Effects of the internal field in the spectra of molecular crystals and the theory of excitons”, Sov. Phys. Usp., v. 17, pp. 103-117, 1974.
[30]
V. M. Agranovich, Theory of Excitons, Nauka Publishers, Moscow, 1968. 328 p.
[31]
D. I. Lalovic, B. S. Tosic, R. R. Zakula. “Theory of Nonlinear Effects in Crystals in the Second-Quantization Representation”, Phys. Rev. v. 178, pp. 1472-1479, February 1969.
[32]
P. А. Apanasevich. Bases of the theory of interaction of light with matter. Science and Technique Publishers, Minsk, 1977. 496 p.[in Russian].
[33]
V. V. Lavric, L. N. Ovander, V. T. Shunyakov. “Tensor of the nonlinear polarizability of anisotropic medium and "local" field method”, Sol. State Commun, v. 47, pp. 355-359, 1983.
[34]
L. D. Landau, E. M. Lifshitz. Quantum Mechanics. Pergamon Press, Oxford, 1974. 702 p.
[35]
L. N. Ovander. “On the form of the Raman scattering tensor”, Optics and Spectroscopy, v. 9, pp. 571- 575, 1960.
[36]
L. G. Koreneva, V. F. Zolin, B. L. Davydov. Molerular crystals in nonlinear optics. Nauka Publishers, Moscow. 1975. 138 p. [in Russian].
[37]
W. Heitler. The Quantum Theory of Radiation. 3d Edition. Dover Publishers, NY, 1954. 430 p.
[38]
Konstantinos Lagoudakis the Physics of Exciton-Polariton Condensates. EPEL Press, Lausanne, Switzerland, 2013. 164p.
[39]
Benoît Deveaud. “Exciton-Polariton Bose-Einstein Condensates”, Annual Review of Condensed Matter Physics, v. 6:155-175, March 2015.
[40]
Nataliya Bobrovska, Michał Matuszewski, Konstantinos S. Daskalakis, Stefan A. Maier, and Stéphane Kéna-Cohen. “Dynamical Instability of a Nonequilibrium Exciton-Polariton, Condensate” ACS Photonics, v. 5 (1), pp. 111–118, 2018.
[41]
Saeed A Khan and Hakan E Türeci. “Competing role of interactions in synchronisation of exciton–polariton condensates”, New Journal of Physics, v. 19:105008, October 2017.
[42]
Tomoyuki Horikiri, Tim Byrnes, Kenichiro Kusudo, Natsuko Ishida, Yasuhiro Matsuo, Yutaka Shikano, Andreas Löffler, Sven Höfling, Alfred Forchel, and Yoshihisa Yamamoto, “Highly excited exciton-polariton condensates”, Phys. Rev. B 95, 245122, 19 June 2017.
[43]
Fabio Scafirimuto, Darius Urbonas, Ullrich Scherf, Rainer F. Mahrt, and Thilo Stöferle “Room-Temperature Exciton-Polariton Condensation in a Tunable Zero-Dimensional Microcavity”, ACS Photonics, v. 5 (1), pp. 85–89, 2018, Web: September 29, 201.
[44]
V. V. Rumyantsev, S. A. Fedorov, and K. V. Gumennik. “Polariton Excitations in a Non-Ideal Array of Microcavities with Quantum Dots”, Physics of the Solid State, Vol. 59, No. 4, pp. 758–765, 2017.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186