| Peer-Reviewed

Towards a History of Concepts of Light-Matter Coupling

Received: 15 June 2015    Accepted: 26 June 2015    Published: 1 July 2015
Views:       Downloads:
Abstract

The article gives a succinct historical review of the evolution of physical concepts in photonics and light-matter coupling during the 20th century with special emphasis on noteworthy contributions made by a prominent Ukrainian theoretician Kirill Tolpygo, whose centenary will be celebrated next year. We dwell in detail on the history of elaboration of such key notions as various types of excitons, polaritons, spatial dispertion in crystals and others. Their correct understanding provides an indispensable basis for further progress in crystal optics.

Published in Journal of Photonic Materials and Technology (Volume 1, Issue 1)
DOI 10.11648/j.jmpt.20150101.11
Page(s) 1-9
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Previous article
Keywords

Photonics, Light-Mater Coupling, Crystal Lattice, Exciton, Polariton, Spatial Dispersion, K. B. Tolpygo

References
[1] J. Frenkel, “On the transformation of light into heat in solids”, Phys. Rev., vol. 37, pp. 1276-1294, January 1931.
[2] R. Peierls, „Zur Theorie der Absorptionsspektren fester Körper“, Ann. Phys., vol. 13, pp. 905-952, 1932.
[3] W. Heitler and F. London, “Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik”, Z. Phys., vol. 44, pp. 455-472, June 1927.
[4] W. Heisenberg, “Zur Theorie des Ferromagnetismus”, Z. Phys., vol. 49, pp. 619-636, May 1928.
[5] G.H. Wannier, “The structure of electronic excitation levels in insulating crystals”, Phys. Rev. vol. 52, pp. 191-197, August 1937.
[6] N.F. Mott, “Conduction in polar crystals. II. The conduction band and ultra-violet absorption of alkali-halide crystals”, Trans. Faraday Soc., vol. 34, pp. 500-506, January 1938.
[7] S. Pekar, “The method of effective electron mass in crystals”, Zh. Eksp. Teor. Fiz., vol. 16, p. 933, 1946.
[8] N.V. Starostin, “Energy spectrum of Frenkel excitons in Cu2O crystal”, Opt. Spectr., vol. 22, pp. 646-652, April 1967.
[9] C. Kittel, Quantum Theory of Solids. New York: Wiley, 1987.
[10] R.S. Knox, Theory of Excitons. New York: Academic Press, Inc., 1963.
[11] V.M. Agranovich, Theory of Excitons. Moscow: Nauka, 1968.
[12] A.S. Davydov, Theory of Molecular Excitons. New York: McGraw-Hill, 1962.
[13] A.S. Davydov, The Theory Of Light Absorption In Molecular Crystals. Kiev: Izd. Akademii nauk USSR, 1951.
[14] A.S. Davydov, “Theory of excitons and solitons in molecular systems (review)”, J. Appl. Spectros., vol. 33, pp. 1029-1047, October 1980.
[15] Н. Haken, “Die Theorie des Exzitons im festen Körper”, Fortschr. Phys., vol. 6, pp. 271-334, 1958.
[16] E.F. Gross and M.A. Yacobson, “The fine structure of the intrinsic absorption edge in a CdS crystal”, Dokl. Akad. Nauk. SSSR, vol. 102, pp. 485-488, 1955.
[17] D. Fishman, Excitons in cuprous oxide, Doctoral thesis, University of Groningen, 2008.
[18] E.F. Gross, “Excitons and their motion in crystal lattices”, Sov. Phys. Usp., vol. 5, pp. 195–218, 1962.
[19] P.W. Baumeister, “Optical absorption of cuprous oxide”, Phys. Rev., vol. 121, pp. 359-363, January 1961.
[20] M.D. Sturge, “Optical absorption of gallium arsenide between 0.5 and 2.75ev”, Phys. Rev. vol. 127, pp. 768-773, August 1962.
[21] D.G. Thomas and J.J. Hopfield, “A magneto-stark effect and exciton motion in CdS”, Phys. Rev., vol. 124, pp. 657-665, November 1961.
[22] M. S. Brodin and M. I. Strashnikova, “Optical properties of a CdS single crystal well inside the fundamental absorption region and the structure of energy bands (UV absorption and dispersion of cadmium sulfide crystals and energy band structure)”, Sov. Phys. Sol. St., vol. 8, pp. 549-551, 1966.
[23] T.A. Kudykina and K.B. Tolpygo, “Exciton of high symmetry in alkali-halide crystals”, Fiz. Tverd. Tela, vol. 14, pp. 626-628, 1972.
[24] S.A. Moskalenko and M.I. Shmiglyuk, “On the energy spectrum of excitons in CdS-type crystals”, Sov. Phys. Sol. St., vol. 6, pp. 2831-2833, 1964.
[25] G. Baldini, “Ultraviolet absorption of solid argon, krypton and xenon”, Phys. Rev., vol. 128, pp. 1562-1567, November 1962.
[26] I.T. Steinberger, C. Atluri and O. Schnepp, “Optical constants of solid xenon in the vacuum-uv region”, J. Chem. Phys., vol. 52, pp. 2723-2729, March 1970.
[27] I.Ya. Fugol', E.V. Savchenko and A.G. Belov, “Luminescence of solid neon”, JETP Lett., vol. 16, pp. 172-174, 1972.
[28] A.G. Belov, I.Ya. Fugol’ and E.V. Savchemko, “Cathodoluminescense of rare-gas solid solution”, Sol. St. Comm., vol. 12, pp. 1-4, January 1973.
[29] A.S. Davydov, Theory of Solid State. Moscow: Izd. Nauka, 1976.
[30] W.R. Heller and A.A. Marcus, “A note on the propagation of excitation in an idealized crystal”, Phys. Rev., vol. 84, pp. 809-813, November 1951.
[31] S.I. Pekar, “Energy of excitons with limitingly small quasi-impulses”, Zh. Eksp. Teor. Fiz., vol. 35, pp. 522-524, 1958.
[32] D. Fox and S. Vatsiv, “Anisotropic effects in optical excitation of excitons in molecular crystals”, Phys. Rev., vol. 108, pp. 938-945, November 1957.
[33] V.L. Bonch-Bruevich and Sh.M. Kogan, “The theory of electron plasma in semiconductors”, Sov. Phys. Sol. St., vol. 1, 1960.
[34] M.S. Brodin, E.N. Myasnikov and S.V. Marisova, Polaritons in crystal optics. Kiev: Naukova Dumka, 1984.
[35] K.B. Tolpygo, “Physical properties of the salt lattice constructed from deforming ions”, Zh. Eksp. Teor. Fiz., vol. 20, pp. 497-509, 1950.
[36] K. Huang, “On the interaction between the radiation field and ionic crystals”, Proc. Roy. Soc. Ser. A, vol. 208, pp. 352-365, September 1951.
[37] M. Born and K. Huang, Dynamical Theory of Crystal Lattices. Oxford: Clarendon Press, 1998.
[38] U. Fano, “Atomic theory of electromagnetic interactions in dense materials”, Phys. Rev., vol. 103, pp. 1202-1218, September 1956.
[39] J.J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals”, Phys. Rev., vol. 112, pp. 1555-1567, December 1958.
[40] V. M. Agranovich, “Dispersion of electromagnetic waves in crystals”, Sov. Phys. JETP, vol. 10, pp. 307-313, 1960.
[41] A.A. Demidenko, “Microtheory of the Frenkel exciton with and without delay”, Sov. Phys. Sol. St., vol. 3, pp. 869-879, 1961.
[42] M. Artoni and J.L. Birman, “Quantum-optical properties of yolariton waves”, Phys.Rev. B, vol. 44, pp. 3736-3756, August 1991.
[43] M. Artoni and J.L. Birman, “Stationary and time-dependent quantum effects in polaritons”, Laser Phys., vol. 5, pp. 584 – 589, 1995.
[44] G. Qin, K.L. Wang and Z.D. Wang, “Exact analytical solution of a polariton model: undetermined coefficient approach”, Phys.Rev. A, vol. 66, pp. 025804 1-4, August 2002.
[45] F. Bassani, “Polaritons” in Electronic excitations in organic based nanostructures, V.M. Agranovich and G.F. Bassani, Eds. Amsterdam: Academic Press, 2003, pp. 129-183.
[46] S.I. Pekar, “Identification of excitons with light waves in a crystal and the macroscopic theory of excitons with and without account of retardation”, Sov. Phys. JETP, vol. 11, pp. 1286-1293, 1960.
[47] G. F. Glinskii and Z. G. Koinov, “Polariton theory of light propagation in crystals I. connection between the microscopic theory of exciton-phonon polaritons and Maxwell equations”. Phys. Stat. Sol. (b), vol. 155, pp. 501-512, October 1989.
[48] S.I. Pekar, “The theory of electromagnetic waves in a crystal in which excitons are produced”, Sov. Phys. JETP, vol. 6, p. 785, 1958.
[49] S.I. Pekar, “Theory of the absorption of light and dispersion in crystals”, Zh. Eksp. Teor. Fiz., vol. 36, p. 451, 1959.
[50] V.B Berestetskii, E.M. Lifshitz and P. Pitaevski, Quantum Electrodynamics. Oxford: Butterworth-Heinemann, 1982.
[51] F. De Martini, “Nonlinear-optics of bulk-polaritons”, in Polaritons: Proceedings of the first Taormina research conference on the structure of matter, October 2-6, 1972, Taormina, Italy and reprints of selected key papers from the literature, E. Burstein and F. De Martini, Eds. New York: Pergamon Press, 1974.
[52] A.A. Rukhadze and V.P. Silin, “Electrodynamics of media with spatial dispersion”, Sov. Phys. Usp., vol. 4, pp. 459-484, 1961.
[53] M.E. Gertsenshtein, “Longitudinal waves in an ionized medium (plasma)”, Zh. Eksp. Teor. Fiz., vol. 22, pp. 303-309, 1952.
[54] V.L. Ginzburg, “Electromagnetic waves in isotropic and crystalline media with account of spatial dispersion of the dielectric constant”, Sov. Phys. JETP, vol. 34, pp. 1593-1604, 1958.
[55] B.N. Gershman, “Note on waves in a homogeneous magnetoactive plasma”, Sov. Phys. JETP, vol. 4, 1957.
[56] K.H. Hellwege, “Optische anisotropie kubischer kristalle bei quadrupolstrahlung”, Z. Phys., vol. 129, pp. 626-641, 1951.
[57] K.B. Tolpygo, “The present state of the theory of polarization of ideal ionic and valence crystals”, Sov. Phys. Usp., vol. 4, pp. 485-497, 1961.
[58] E. F. Gross and A.A. Kaplianskii, “Optical anisotropy of cubic crystals produced by dispersion in a space-quadrupole excitonic absorption of light in cuprous oxide”, Dokl. Akad. Nauk SSSR, vol. 132, pp. 98-101, 1960.
[59] S.I. Pekar, “Dispersion of light in the exciton absorption region of crystals”, Sov. Phys. JETP, vol. 7, pp. 813-822, 1958.
[60] S.I. Pekar, Crystal Optics and Additional Light Waves. Menlo Park, CA: Benjamin-Cummings, 1983.
[61] V.N. Piskovoy, The theory of optical and acoustoelectric phenomena associated with anomalies in the spatial dispersion as well as in the field and deformational dependences of dielectric responses of crystals, Habilit. Thesis, ISP NAS USSR, Kiev, 1984.
[62] V.A. Kiselev, B.S. Razbirin and I.N. Ural'tsev, “Interference states of optical excitons. Observation of additional waves”, Sov. Phys. JETP Lett., vol. 18, pp. 296-298, 1973.
[63] V.A. Kiselev, B.S. Razbirin and I.N. Uraltsev, “Additional waves and Fabry-Perot interference of photoexcitons (polaritons) in thin II-VI crystals”, Phys. St. Sol., vol. B72, pp. 161-172, November 1975.
[64] M.I. Strashnikova and A.T. Rudchik, “On shape of exciton absorption bands in CdS monocrystals at 4.2 K”, Fiz. Tverd. Tela, vol. 14, pp. 984-988, 1972.
[65] M. S. Brodin, N. A. Davydova and M. I. Strashnikova, “Anomalous dispersion of a CdS single crystal in the exciton-absorption region”, Pis'ma Zh. Eksp. Teor. Fiz., vol. 19, pp. 567-571, 1974.
[66] M.I. Strashnikova, “Failure of classical Fresnel relationships in the exciton absorption region”, Sov. Phys. Sol. St., vol. 17, pp. 467-470, 1975.
[67] S.I. Pekar and M.I. Strashnikova, “Spatial dispersion and additional light waves in the region of exciton absorption in CdS”, Zh. Eksp. Teor. Fiz., vol. 68, pp. 2047-2054, 1975.
[68] J. Braser, M. Rosenzweig, R. Braser, M. Richard and E. Birkcht, “A quantitative study of excitonic polariton reflectance in CdS”, Phys. St. Sol., vol. B90, pp. 77-91, November 1978.
[69] I.S. Gorban and V.B. Timofeev, “Complex refraction in single cuprous oxide crystals”, Dokl. Akad. Nauk SSSR, vol. 140, pp. 791-793, 1961.
[70] S. I. Pekar and B. E. Tsekvava, “The dispersion of light in exciton absorption regions in cubic crystals as affected by the anisotropy of the effective mass of the exciton”, Sov. Phys. Sol. St., vol. 2, pp. 242-251, 1960.
[71] G.S. Agarwal, D.N. Pattanayak, and E. Wolf, “Structure of the electromagnetic field in a spatially dispersive medium”, Phys. Rev. Lett., vol. 27, pp. 1022-1025, October 1971.
[72] P.R. Rimbey, “Polariton Green’s functions for semi-infinite spatially dispersive media with applications to molerular crystal reflectivity spectra”, J. Chem. Phys., vol. 67, pp. 698-709, July 1977.
[73] A.A. Demidenko, S.I. Pekar and E. Tsekvava, “Contribution to the theory of spatial dispersion and auxiliary light waves in the exciton absorption region”, Sov. Phys. JETP, vol. 49, pp. 734-740, April 1979.
[74] E. Rashba and M. Sterge, Excitons. Amsterdam: North-Holland Publ., 1982.
[75] V.V. Rumyantsev and, K.B. Tolpygo, “Light propagation in a crystal in the vicinity of a quadrupolar permitted transition”, Ukr. Phys. J., vol. 30, pp. 699-707, 1985.
[76] K.B. Tolpygo, “Propagation of light in a crystal as a retarded excitation transfer of its atoms”, Ukr. Fiz. Zh., vol. 31, pp. 178-187, 1986.
[77] A.A. Borgardt and K.B. Tolpygo, “Space-time dispersion, dielectric permittivity and the causality principle”, Ukr. Fiz. Zh., vol. 23, pp. 607-615, 1978.
[78] P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator”, Nature, vol. 450, pp. 1214–1217, December 2007.
[79] D. Hou, B. Ning, J. Wu, Z. Wang and J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator”, Appl. Phys. Lett., vol. 102, pp. 151104 1-4, April 2013.
[80] S.B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K.J. Vahala and S.A. Diddams, “Microresonator frequency comb optical clock”, Optica, vol. 1, pp.10-14, July 2014.
[81] E.S. Sedov, A.P. Alodjants, S. M. Arakelian, Y.Y. Lin and R.-K. Lee, “Nonlinear properties and stabilities of polaritonic crystals beyond the low-excitation-density limit”, Phys. Rev. A, vol. 84, pp. 013813, July 2011.
[82] V.V. Rumyantsev, S.A. Fedorov, K.V. Gumennyk and M.V. Proskurenko, “Peculiarities of propagation of electromagnetic excitation through a nonideal gyrotropic photonic crystal”, Physica B, vol. 442, pp. 57-59, June 2014.
[83] V.V. Rumyantsev, S.A. Fedorov, K.V. Gumennyk, M.V. Sychanova and A.V. Kavokin, “Exciton-like electromagnetic excitations in non-ideal microcavity supercrystals”, Nature. Sci. Rep., vol. 4, art. No. 6945, November 2014.
[84] V.V. Rumyantsev, S.A. Fedorov, K.V. Gumennyk and M.V. Sychanova, “Dispersion characteristics of electromagnetic excitations in a disordered 1D lattice of coupled microresonators”, Physica B, vol. 461, pp. 32-37, March 2015.
Cite This Article
  • APA Style

    V. V. Rumyantsev, K. V. Gumennyk. (2015). Towards a History of Concepts of Light-Matter Coupling. Journal of Photonic Materials and Technology, 1(1), 1-9. https://doi.org/10.11648/j.jmpt.20150101.11

    Copy | Download

    ACS Style

    V. V. Rumyantsev; K. V. Gumennyk. Towards a History of Concepts of Light-Matter Coupling. J. Photonic Mater. Technol. 2015, 1(1), 1-9. doi: 10.11648/j.jmpt.20150101.11

    Copy | Download

    AMA Style

    V. V. Rumyantsev, K. V. Gumennyk. Towards a History of Concepts of Light-Matter Coupling. J Photonic Mater Technol. 2015;1(1):1-9. doi: 10.11648/j.jmpt.20150101.11

    Copy | Download

  • @article{10.11648/j.jmpt.20150101.11,
      author = {V. V. Rumyantsev and K. V. Gumennyk},
      title = {Towards a History of Concepts of Light-Matter Coupling},
      journal = {Journal of Photonic Materials and Technology},
      volume = {1},
      number = {1},
      pages = {1-9},
      doi = {10.11648/j.jmpt.20150101.11},
      url = {https://doi.org/10.11648/j.jmpt.20150101.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jmpt.20150101.11},
      abstract = {The article gives a succinct historical review of the evolution of physical concepts in photonics and light-matter coupling during the 20th century with special emphasis on noteworthy contributions made by a prominent Ukrainian theoretician Kirill Tolpygo, whose centenary will be celebrated next year. We dwell in detail on the history of elaboration of such key notions as various types of excitons, polaritons, spatial dispertion in crystals and others. Their correct understanding provides an indispensable basis for further progress in crystal optics.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Towards a History of Concepts of Light-Matter Coupling
    AU  - V. V. Rumyantsev
    AU  - K. V. Gumennyk
    Y1  - 2015/07/01
    PY  - 2015
    N1  - https://doi.org/10.11648/j.jmpt.20150101.11
    DO  - 10.11648/j.jmpt.20150101.11
    T2  - Journal of Photonic Materials and Technology
    JF  - Journal of Photonic Materials and Technology
    JO  - Journal of Photonic Materials and Technology
    SP  - 1
    EP  - 9
    PB  - Science Publishing Group
    SN  - 2469-8431
    UR  - https://doi.org/10.11648/j.jmpt.20150101.11
    AB  - The article gives a succinct historical review of the evolution of physical concepts in photonics and light-matter coupling during the 20th century with special emphasis on noteworthy contributions made by a prominent Ukrainian theoretician Kirill Tolpygo, whose centenary will be celebrated next year. We dwell in detail on the history of elaboration of such key notions as various types of excitons, polaritons, spatial dispertion in crystals and others. Their correct understanding provides an indispensable basis for further progress in crystal optics.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Dept. of dynamical properties of complex systems, Galkin Institute for Physics & Engineering, Donetsk, Ukraine

  • Dept. of electronic properties of metals, Galkin Institute for Physics & Engineering, Donetsk, Ukraine

  • Sections