| Peer-Reviewed

Thin Films to Single Crystals: Organometal Halide Perovskite Materials for Advanced Optoelectronics

Received: 24 October 2016    Accepted: 12 November 2016    Published: 12 December 2016
Views:       Downloads:
Abstract

The recent emergence of perovskite materials has revolutionized the photovoltaic (PV) technology and offers solutions to contemporary energy and environmental issues. Moreover, the capabilities of single crystals are far superior to the thin film counterparts. This mini review outlines the growth parameters and crystal kinetics involved in the perovskite single crystal growth process for a superior wafer-style solar cell devices. Typically, perovskite solar cells with perovskite in the film form are attractive with their higher performance but, they degrade at faster rate, suffer immensely from a high density of traps and grain boundaries, which markedly limit the potential performance in devices. This review discusses a list of factors affecting it and provide future prospects of this thriving technology.

Published in Journal of Photonic Materials and Technology (Volume 2, Issue 3)
DOI 10.11648/j.jmpt.20160203.12
Page(s) 25-31
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Perovskites, Single Crystal, Growth Kinetics, Photovoltaics

References
[1] G. Hodes, Perovskite-based solar cells, Science. 342 (2013) 317–8. doi: 10.1126/science.1245473.
[2] M. A. Green, A. Ho-Baillie, H. J. Snaith, The emergence of perovskite solar cells, Nat. Photonics. 8 (2014) 506–514. doi: 10.1038/nphoton.2014.134.
[3] P. Gao, M. Grätzel, M. K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy Environ. Sci. 7 (2014) 2448–2463. doi: 10.1039/c4ee00942h.
[4] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 5 (2014) 1511–1515. doi: 10.1021/jz500113x.
[5] N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today. 18 (2015) 65–72. doi: 10.1016/j.mattod.2014.07.007.
[6] A. K. Chilvery, A. K. Batra, B. Yang, K. Xiao, P. Guggilla, M. D. Aggarwal, R. Surabhi, R. B. Lal, J.. Currie, B. G. Penn, Perovskites: transforming photovoltaics, a mini-review, J. Photonics Energy. 5 (2015) 57402.
[7] A. G. Martin, E. Keith, H. Yoshihiro, W. Wilhelm, D. D. Ewan, Solar cell efficiency tables (version 47), Prog. Photovolt Res. Appl. 24 (2016) 3–11. doi: 10.1002/pip.
[8] NREL Efficiency Chart, 2016. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[9] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. Il Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science. 348 (2015) 1234–1237.
[10] A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel, J.-E. Moser, Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells, Nat. Photonics. 8 (2014) 250–255. doi: 10.1038/nphoton.2013.374.
[11] G. Giorgi, J. Fujisawa, H. Segawa, K. Yamashita, Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis, J. Phys. Chem. Lett. 4 (2013) 4213–4216.
[12] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050–6051. doi: 10.1021/ja809598r.
[13] D. Liu, T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat. Photonics. 8 (2013) 133–138. doi: 10.1038/nphoton.2013.342.
[14] C. Kagan, D. Mitzi, C. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors, Science. 286 (1999) 945–947. http://www.ncbi.nlm.nih.gov/pubmed/10542146.
[15] S. A. Bretschneider, J. Weickert, J. a. Dorman, L. Schmidt-Mende, Physical and electrical characteristics of lead halide perovskites for solar cell applications, APL Mater. 2 (2014) 40701. doi: 10.1063/1.4871795.
[16] E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero, J. Bisquert, Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells, J. Phys. Chem. Lett. 5 (2014) 2390–2394. doi: 10.1021/jz5011169.
[17] Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X. Y. Zhu, S. Jin, Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability, Nano Lett. 16 (2016) 1000–1008. doi: 10.1021/acs.nanolett.5b04053.
[18] M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed, O. M. Bakr, High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization, Nat. Commun. 6 (2015) 7586. doi: 10.1038/ncomms8586.
[19] C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem. 52 (2013) 9019–9038.
[20] A. D. Sheikh, A. Bera, A. Haque, R. B. Rakhi, S. Del, H. N. Alshareef, T. Wu, Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells, Sol. Energy Mater. Sol. Cells. 137 (2015) 6–14. doi: 10.1016/j.solmat.2015.01.023.
[21] M. Meister, Charge Generation and Recombination in Hybrid Organic / Inorganic Solar Cells, Johannes Gutenberg-University Mainz, 2013.
[22] H.-S. Kim, S. H. Im, N.-G. Park, Organolead Halide Perovskite: New Horizons in Solar Cell Research, J. Phys. Chem. C. 118 (2014) 5615–5625. doi: 10.1021/jp409025w.
[23] N. Park, Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, J. Phys. Chem. Lett. 4 (2013) 2423–2429.
[24] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett. 13 (2013) 1764–1769. doi: 10.1021/nl400349b.
[25] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, Perovskite solar cells employing organic charge-transport layers, Nat. Photonics. 8 (2013) 128–132. doi: 10.1038/nphoton.2013.341.
[26] H. S. Kim, N.-G. Park, Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer, J. Phys. Chem. Lett. 5 (2014) 2927–2934. doi: 10.1021/jz501392m.
[27] R. S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y. S. Kang, I. Mora-Sero, J. Bisquert, Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis, J. Phys. Chem. Lett. 5 (2014) 2357–2363. doi: 10.1021/jz5011187.
[28] X. W. Zhou, F. P. Doty, P. Yang, Atomistic Models for Scintillatory Discovery, in: F. P. Doty, H. B. Barber, H. Roehrig, R. C. Schirato (Eds.), Penetrating Radiat. Syst. Appl. XI, 2010: p. 78060E1-78060E6. doi: 10.1117/12.864152.
[29] J. Huang, Y. Shao, Q. Dong, Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond?, J. Phys. Chem. Lett. 6 (2015) 3218–3227. doi: 10.1021/acs.jpclett.5b01419.
[30] V. M. Goldschmidt, Geochemisce Verterlungsgesetze der Elemente, Oslo, 1927.
[31] M. Johnsson, P. Lemmens, Crystallography and Chemistry of Perovskites, in: John Wiley Sons, Ltd, New York, 2007: p. 11. doi: 10.1002/9780470022184.hmm411.
[32] S. B. Hendricks, Z. Kristallogr, The Crystal Structure of Perovskites, 67 (1928) 106.
[33] E. W. Hughes, W. N. Lipscomb, The Crystal Structure of Methylammonium Chloride, J. Am. Chem. Soc. 68 (1946) 1970–1975.
[34] E. J. Gabe, The crystal structure of methylammonium bromide, Acta Crystallogr. 14 (1961) 1296–1296. doi: 10.1107/S0365110X6100382X.
[35] J. Fan, B. Jia, M. Gu, Perovskite-based low-cost and high-efficiency hybrid halide solar cells, Photonics Res. 2 (2014) 111. doi: 10.1364/PRJ.2.000111.
[36] D. B. Mitzi, M. T. Prikas, K. Chondroudis, Thin Film Deposition of Organic - Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique, Chem. Mater. 11 (1999) 542–544.
[37] D. B. Mitzi, Templating and structural engineering in organic–inorganic perovskites, Dalt. Trans. 1 (2001) 1–12. doi: 10.1039/b007070j.
[38] D. B. Mitzi, K. Chondroudis, C. R. Kagan, Organic-Inorganic Electronics, IBM J. Res. Dev. 45 (2001) 29–45.
[39] D. B. Mitzi, Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials, John Wiley & Sons, West Sissex, England, New York, 1999.
[40] J. L. Knutson, J. D. Martin, D. B. Mitzi, Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating, Inorg. Chem. 44 (2005) 4699–705. doi: 10.1021/ic050244q.
[41] N. Espinosa, L. Serrano-luján, A. Urbina, F. C. Krebs, Solution and vapour deposited lead perovskite solar cells : Ecotoxicity from a life cycle assessment perspective, Sol. Energy Mater. Sol. Cells. 137 (2015) 303–310. doi: 10.1016/j.solmat.2015.02.013.
[42] G. Kieslich, S. Sun, T. Cheetham, An Extended Tolerance Factor Approach for Organic-Inorganic Perovskites, Chem. Sci. 6 (2015) 3430–3433. doi: 10.1039/C5SC00961H.
[43] A. Chilvery, S. Das, P. Guggilla, C. Brantley, A. Sunda-meya, A perspective on the recent progress in solution- processed methods for highly efficient perovskite solar cells, Sci. Technol. Adv. Mater. 17 (2016) 1–9. doi: 10.1080/14686996.2016.1226120.
[44] M. A. Loi, J. C. Hummelen, Hybrid solar cells: Perovskites under the Sun, Nat. Mater. 12 (2013) 1087–9. doi: 10.1038/nmat3815.
[45] Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia, X. Tao, Bulk Crystal Growth of Hybrid Perovskite Material CH3NH3PbI3. CrystEngComm 2015, 17, 665−670. (49) Weller, M. T.; Weber, O. J.; Henry, P. F.; Di, Cryst. Eng. Commun. 17 (2015) 665–670.
[46] T. C. Weller, M. T.; Weber, O. J.; Henry, P. F.; Di Pumpo, A. M.; Hansen, Complete Structure and Cation Orientation in the Perovskite Photovoltaic Methylammonium Lead Iodide Between 100 and 352 K, Chem. Commun. 51 (2015) 4180–4183.
[47] C. Quarti, E. Mosconi, F. De Angelis, Structural and Electronic Properties of Organo-Halide Hybrid Perovskites from Ab Initio Molecular Dynamics, Phys. Chem. Chem. Phys. 17 (2015) 9394−9409.
[48] M. A. Carignano, A. Kachmar, J. Hutter, Thermal Effects on CH3NH3PbI3 Perovskite from Ab Initio Molecular Dynamics Simulations, J. Phys. Chem. 119 (2015) 8991−8997.
[49] J. M. Frost, K. T. Butler, A. Walsh, Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells, APL Mater. 2 (2014) 81506. doi: 10.1063/1.4890246.
[50] F. Zheng, D. Saldana-Greco, S. Liu, A. M. Rappe, Material Innovation in Advancing Organometal Halide Perovskite Functionality, J. Phys. Chem. Lett. 6 (2015) 4862–4872. doi: 10.1021/acs.jpclett.5b01830.
[51] Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J. M. Luther, M. C. Beard, Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal, Nat Commun. 6 (2015) 7961. doi: 10.1038/ncomms8961.
[52] F. Yongping, M. Fei, R. Matthew B, M. Blaise J, Thompson Shearer, M. Dewei, H. Robert J, W. John, J. Song, Solution Growth of Single Crystal Methylammonium Lead Halide Perovskite Nanostructures for Optoelectronic and Photovoltaic Applications, J. Am. Chem. Soc. 137 (2015) 5810–5818.
[53] M. De Bastiani, V. D’Innocenzo, S. D. Stranks, H. J. Snaith, A. Petrozza, Role of the crystallization substrate on the photoluminescence properties of organo-lead mixed halides perovskites, APL Mater. 2 (2014) 81509. doi: 10.1063/1.4889845.
[54] W. Nie, H. Tsai, R. Asadpour, J. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. Wang, A. D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science (80-.). 347 (2015) 522–525.
[55] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science. 347 (2015) 519–522.
[56] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 um in solution-grown CH 3 NH 3 PbI 3 single crystals, Science. 347 (2015) 967–970.
[57] A. Pisoni, J. Jaćimović, O. S. Barišić, M. Spina, R. Gaál, L. Forró, E. Horváth, Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH 3 NH 3 PbI 3, J. Phys. Chem. Lett. (2014) 2488–2492. doi: 10.1021/jz5012109.
[58] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications, Energy Environ. Sci. 7 (2014) 3061–3068. doi: 10.1039/C4EE01076K.
[59] G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B. Murali, E. Alarousu, O. F. Mohammed, T. Wu, O. M. Bakr, CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector, J. Phys. Chem. Lett. 6 (2015) 3781–3786. doi: 10.1021/acs.jpclett.5b01666.
[60] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells, Nat. Photonics. 8 (2014) 489–494. doi: 10.1038/nphoton.2014.82.
[61] S. Brittman, G. Erik C, Measuring n and k at the Microscale in Single Crystals of CH3NH3PbBr3 Perovskite, J. Phys. Chem. C. 120 (2016) 616–620.
[62] W. Tang, J. Hai, Y. Dai, Z. Huang, B. Lu, F. Yuan, J. Tang, F. Zhang, Recent development of conjugated oligomers for high-efficiency bulk-heterojunction solar cells, Sol. Energy Mater. Sol. Cells. 94 (2010) 1963–1979. doi: 10.1016/j.solmat.2010.07.003.
[63] M. I. Saidaminov, A. L. Abdelhady, G. Maculan, O. M. Bakr, Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth, Chem. Commun. 51 (2015) 17658–17661. doi: 10.1039/C5CC06916E.
[64] G. Grancini, V. D’Innocenzo, E. R. Dohner, N. Martino, A. R. Srimath Kandada, E. Mosconi, F. De Angelis, H. I. Karunadasa, E. T. Hoke, A. Petrozza, CH3NH3PbI3 Perovskite Single Crystals: Surface Photophysics and its Interaction with the Environment, Chem. Sci. 6 (2015) 7305–7310. doi: 10.1039/C5SC02542G.
[65] M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation, Adv. Mater. 26 (2014) 7122–+. doi: 10.1002/adma.201401991.
[66] J. Su, D. P. Chen, C. T. Lin, Growth of large CH3NH3PbX3 (X=I, Br) single crystals in solution, J. Cryst. Growth. 422 (2015) 75–79. doi: 10.1016/j.jcrysgro.2015.04.029.
[67] K. Park, J. W. Lee, J. D. Kim, N. S. Han, D. M. Jang, S. Jeong, J. Park, J. K. Song, Light-Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers, J. Phys. Chem. Lett. (2016) acs.jpclett.6b01821. doi: 10.1021/acs.jpclett.6b01821.
Cite This Article
  • APA Style

    Padmaja Guggilla, Ashwith Chilvery, Kamala Bhat, Edelmy J. Bernardez. (2016). Thin Films to Single Crystals: Organometal Halide Perovskite Materials for Advanced Optoelectronics. Journal of Photonic Materials and Technology, 2(3), 25-31. https://doi.org/10.11648/j.jmpt.20160203.12

    Copy | Download

    ACS Style

    Padmaja Guggilla; Ashwith Chilvery; Kamala Bhat; Edelmy J. Bernardez. Thin Films to Single Crystals: Organometal Halide Perovskite Materials for Advanced Optoelectronics. J. Photonic Mater. Technol. 2016, 2(3), 25-31. doi: 10.11648/j.jmpt.20160203.12

    Copy | Download

    AMA Style

    Padmaja Guggilla, Ashwith Chilvery, Kamala Bhat, Edelmy J. Bernardez. Thin Films to Single Crystals: Organometal Halide Perovskite Materials for Advanced Optoelectronics. J Photonic Mater Technol. 2016;2(3):25-31. doi: 10.11648/j.jmpt.20160203.12

    Copy | Download

  • @article{10.11648/j.jmpt.20160203.12,
      author = {Padmaja Guggilla and Ashwith Chilvery and Kamala Bhat and Edelmy J. Bernardez},
      title = {Thin Films to Single Crystals: Organometal Halide Perovskite Materials for Advanced Optoelectronics},
      journal = {Journal of Photonic Materials and Technology},
      volume = {2},
      number = {3},
      pages = {25-31},
      doi = {10.11648/j.jmpt.20160203.12},
      url = {https://doi.org/10.11648/j.jmpt.20160203.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jmpt.20160203.12},
      abstract = {The recent emergence of perovskite materials has revolutionized the photovoltaic (PV) technology and offers solutions to contemporary energy and environmental issues. Moreover, the capabilities of single crystals are far superior to the thin film counterparts. This mini review outlines the growth parameters and crystal kinetics involved in the perovskite single crystal growth process for a superior wafer-style solar cell devices. Typically, perovskite solar cells with perovskite in the film form are attractive with their higher performance but, they degrade at faster rate, suffer immensely from a high density of traps and grain boundaries, which markedly limit the potential performance in devices. This review discusses a list of factors affecting it and provide future prospects of this thriving technology.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Thin Films to Single Crystals: Organometal Halide Perovskite Materials for Advanced Optoelectronics
    AU  - Padmaja Guggilla
    AU  - Ashwith Chilvery
    AU  - Kamala Bhat
    AU  - Edelmy J. Bernardez
    Y1  - 2016/12/12
    PY  - 2016
    N1  - https://doi.org/10.11648/j.jmpt.20160203.12
    DO  - 10.11648/j.jmpt.20160203.12
    T2  - Journal of Photonic Materials and Technology
    JF  - Journal of Photonic Materials and Technology
    JO  - Journal of Photonic Materials and Technology
    SP  - 25
    EP  - 31
    PB  - Science Publishing Group
    SN  - 2469-8431
    UR  - https://doi.org/10.11648/j.jmpt.20160203.12
    AB  - The recent emergence of perovskite materials has revolutionized the photovoltaic (PV) technology and offers solutions to contemporary energy and environmental issues. Moreover, the capabilities of single crystals are far superior to the thin film counterparts. This mini review outlines the growth parameters and crystal kinetics involved in the perovskite single crystal growth process for a superior wafer-style solar cell devices. Typically, perovskite solar cells with perovskite in the film form are attractive with their higher performance but, they degrade at faster rate, suffer immensely from a high density of traps and grain boundaries, which markedly limit the potential performance in devices. This review discusses a list of factors affecting it and provide future prospects of this thriving technology.
    VL  - 2
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Chemistry, and Mathematics, Alabama A&M University, Normal, USA

  • Department of Physics and Dual Degree Engineering, Xavier University of Louisiana, New Orleans, USA

  • Department of Physics, Chemistry, and Mathematics, Alabama A&M University, Normal, USA

  • Department of Physics and Dual Degree Engineering, Xavier University of Louisiana, New Orleans, USA

  • Sections