Metals Hydrosols Universal Extinction Spectrum of 0.2 Micrometer Wavelength Ultrafine Component
Nanoscience and Nanometrology
Volume 3, Issue 1, June 2017, Pages: 1-5
Received: Apr. 18, 2016; Accepted: Mar. 17, 2017; Published: May 8, 2017
Views 942      Downloads 47
Authors
Nikolay N. Ostroukhov, Physics and Mathematics, MAI - Scientific Research University, Moscow, Russia
Alexander Yu. Tyanginskii, Electrical Engineering and Technology, MAI - Scientific Research University, Moscow, Russia
Maria V. Lebedeva, Electrical Engineering, Mechanics and Technology, MAI - Scientific Research University, Moscow, Russia
Article Tools
Follow on us
Abstract
The results of comparative experiments on hydrosol of metals and weak metal saline solution with 0.2 micrometer wavelength spectroscopy have been presented. Quality identity of the spectrum for all examined metals such as Ag, Cu, Na, Ni, Fe, has been defined. In conclusion based upon the similarities between metal colloid solutions and salt solutions with 0.2 micrometre wavelength (λ= 0.2 mkm) extinction spectra, a metal corpuscular and atomic component, as well as low level clusters were found in the solutions.
Keywords
Hydrosol of Metals, The Spectrum for Metals, Atomic Component in the Solutions, Metals Skin Layer, Spectrum of Absorption, Silver Hydrosol Solution, Absorbent Material Busofit, Silver Crystals
To cite this article
Nikolay N. Ostroukhov, Alexander Yu. Tyanginskii, Maria V. Lebedeva, Metals Hydrosols Universal Extinction Spectrum of 0.2 Micrometer Wavelength Ultrafine Component, Nanoscience and Nanometrology. Vol. 3, No. 1, 2017, pp. 1-5. doi: 10.11648/j.nsnm.20170301.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Ostroukhov N. N., Tyanginsky A. Yu., Sleptsov V. V., Tserulev M. V. Elektrorazryadnaya Tekhnologiya polucheniya diagnostiki I biologicheskoyo primeneniye gidrozoley metallov s chastitsami nanometrovogo razmera. [Electro-discharge technology of the production, diagnostics, and biological application of hydrosols of metals with nanoparticles]. Fizika I Khimiya Obrabotki Materialov. [Physics and Chemistry of Materials Treatment], 2013, No. 1 p. 77-82. (In Russia).
[2]
N. N. Ostroukhov, A. Yu. Tyanginskii, V.V. Sleptsov, and M. V. Tserulev. Electric Discharge Technology of Production and Diagnosis of Metallic Hydrosols with Nanosized Particles Inorganic Materials. Applied Research, 2014, Vol. 5, No 3, pp. 284-288.
[3]
D. Yu. Kukushkin, N. N. Ostroukhov, A. Yu. Tanginsky, M. V. Tserulev. Pure hydrosol of metals: concentration of single hydrated atoms and formation of epitaxial structures on the crystal surface. MATI (Moscow Aviation Technical Institute) K. E. Tsiolkovsky, Russian State Technological University, Moscow, Russia. Fizika, Khimiya Obrabotki Materialov. [Physics and Chemistry of Materials Treatment], 2014, No 3, p. 18-25.
[4]
Ph. D. N. N. Ostroukhov, MATI – Moscow State Technological University under the name of K. Ed. Tziolkovsky; Mono-crystal Nanostructures of Metal, Formed into Ultra-dispersed Impurity Free Hydrosol of Silver. Nanoengineering #7, 2014, pp. 29-33(in Russia).
[5]
R. T. Askarov, PhD in Physics and Mathematics N. N. Ostroukhov, PhD A. Yu. Tyanginsky. FGBOU VPO MATI – Russian State Technological University under the name of K. Ed. Tziolkovsky. Moscow. Grinding of Frozen Nanoparticles of Colloid Solution of Silver. Nano Engineering.
[6]
N. N. Ostroukhov, A. Yu. Tyanginsky. MATI – Russian State Technological University. Moscow. Russia. Physics and Chemistry of Material Treatment (Phyziks I Chimiya Obrabotki Materialov). 2016. №1, pp. 88-93.
[7]
Born M., Wolf E., Principles of Optics, Cambridge, Cambridge University, 2005.
[8]
Physical and Colloid Chemistry Ed. AP/ Belyaev, Moscow, GOETAR – media Publ., pp. 528-529, 534-535. (In Russian).
[9]
Suzdalev I. P., Nanotechnologiya: Fiziko-khimia rastvorov nanostructures, and Nanomaterials. Moscow. Komkniga Publ., 2006, p. 592. (In Russian).
[10]
Klimov V. V. Nanoplazmonika [ Nanoplssmonics]. Moscow. Fizmatlit Publ., 2009, p.480. (in Russian).
[11]
Encyclopedia of Low- Temperature Plasma, Moscow, М. Nauka. 2000, v II pp. 634. ( in Russian).
[12]
F. Albert Cotton, Geoffrey Wilkinson, Interscience Publishers. Devision of John Wiley & Sons. New York. London- Sydney. MIR Publishing, Moscow, 1969, pp. 78-79.
[13]
Yu. А. Кrutiyakov, А. А. Kudrinski, А. Yu. Olenin, G. V. Lisichkin. Syntez I Svoistva Serebra. Dostizeniya I perspective. Uspekhi Khimii,. (in Russian) [Synthesis and Properties of Silver. Success In Chemistry.], 2008, т.77, №3, p. 242-269.
[14]
B. G. Ershov. Nanochastitzi metallov v vodnich rastvorac: electronnie I kataliticheskie svoistva. Rossiisky Chimicheski Zhurnal. [Nanoparticles of Metals in Water Solutions: electrical, optical and catalytic properties Journal of Chemistry.] 2002, т.45, №3, p.20-30.
[15]
B. G. Ershov, V. I. Roldugin, V. M. Rudoi, P. A. Morozov, O.V. Dementieva. Size Effect of Gold Nanoparticles Absorption While Ozone Absorb. Publishing House - Science. Colloid Journal. 2012, т.74, №6, p. 721.
[16]
G. A. Dorofeev, A. N. Streletzki., I. V. Povstugar, A. V. Protasov, E. P. Elkusov. Nanoparticles’ Size Measurement by X-Ray Diffraction. Colloid Journal. 2012, т.74, №6, p. 710.
[17]
Е. М. Egorova. Metal Nanoparticles in Solutions: Biosynthesis’s Aplication. Nanotechnology. 2004, №1, p.15-26., №1, с.15-26.].
[18]
S. Karpov. Optical Memory of Metal Nanoparticles’ Units. The Photonics. 2008 p 67-71.
[19]
S. Karpov. Optical Effects in Metal Nano Colloids. The Photonics. 2012. №2. p334.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931