| Peer-Reviewed

Improving the CO Sensing Properties of Ferrocene Modified Polypyrrole/Silicon Carbide Nanocomposite Films Synthesized by Electrochemical Deposition

Received: 2 December 2016    Accepted: 12 December 2016    Published: 22 March 2017
Views:       Downloads:
Abstract

In this study, SiC nanoparticles 40 nm in diameter were added to ferrocene-modified conducting polymer (Fc-PPy) films to improve the signal/noise ratio of a sensor. The increased porosity of the Fc-PPy/SiC nanocomposite film produces a larger active surface area with more active sites available for adsorption. Electrochemical deposition was used to fabricate nanocomposite films (PPy, Fc-PPy, PPy/SiC and Fc-PPy/SiC), on both QCM and interdigitated electrodes, to measure CO concentration. All nanocomposites were characterized using XRD, SEM and TEM. The grain sizes of the nanocomposites were measured to be between 100 nm and 500 nm after electrochemical polymerization coating. IDE chemiresistor sensors and QCM piezoelectric sensors were used to investigate the potential sensing mechanisms and adsorption-desorption kinetics of Fc-PPy/SiC nanocomposite films and to compare these films with bare PPy films. The sensitivity of Fc-PPy/SiC nanocomposite sensors to CO gas was significantly improved by the effects of the chemical activation of SiC catalyst nanoparticle additives and ferrocene modified conducting polymers.

Published in American Journal of Nanosciences (Volume 3, Issue 1)
DOI 10.11648/j.ajn.20170301.11
Page(s) 1-8
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Ferrocene Modified Polypyrrole, SiC, QCM, IDE, CO Adsorption

References
[1] Ahmed, N.; Upadhyaya, M.; Kakati, D. K. Synthesis of nanostructured Polyaniline in dodecyl sulphuric acid (DSA) mediated Miceller medium with isopropyl alcohol as cosurfactant. Res. J. Chem. Environ. 2012, 16, 19-25.
[2] Alessio, P.; Ferreira, D. M.; Job, A. E.; Aroca, R. F.; Riul,, A.; Constantino, C. J. L.; Pérez González, E. R. Fabrication, structural characterization, and applications of Langmuir and Langmuir-Blodgett films of a poly (azo)urethane. Langmuir 2008, 24, 4729-4737.
[3] Alves, M. R. A.; Calado, H. D. R.; Donnici, C. L.; Matencio, T. Electrochemical polymerization and characterization of new copolymers of 3-substituted thiophenes. Synth. Met. 2010, 160, 22-27.
[4] Kate, K. H.; Damkale, S. R.; Khanna, P. K.; Jain, G. H. Nano-silver mediated polymerization of pyrrole: synthesis and gas sensing properties of Polypyrrole (PPy)/Ag nano-composite. J. Nanosci. Nanotech. 2011, 11, 7863-7869.
[5] Amer, W. A.; Wang, L.; Amin, A. M.; Ma, L. A.; Yu, H. J. Recent progress in the synthesis and applications of some ferrocene derivatives and ferrocene-based polymers. J. Inorg. Organomet. Polym. Mater. 2010, 20 605-615.
[6] Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267-307.
[7] Paul, S.; Chavan, N. N.; Radhakrishnan, S. Polypyrrole functionalized with ferrocenyl derivative as a rapid carbon monoxide sensor. Synth. Met. 2009, 159, 415-418.
[8] Zeng, W.; Liu, T.; Wang, Z. Enhanced gas sensing properties by SnO2 nanosphere functionalized TiO2 nanobelts. J. Mater. Chem. 2012, 22, 3544-3548.
[9] Dan, Y.; Evoy, S.; Johnson, A. Chemical gas sensors based on nanowires. arXiv preprint arXiv 2008 0804.4828.
[10] Ameer, Q.; Adeloju, S. B. Polypyrrole-based electronic noses for environmental and industrial analysis. Sens. Actuators B Chem. 2005, 106, 541-552.
[11] Casals, O.; Romano-Rodriguez, A.; Becker, T. 1.1. 4 SiC-based MIS gas sensor for CO detection in very high water vapor environments. Proceedings IMCS 2012, 72-75.
[12] Mavinakuli, P.; Wei, S.; Wang, Q.; Karki, A. B.; Dhage, S.; Wang, Z.; Young, D. P.; Guo, Z. Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity. J. Phys. Chem. C 2010, 114, 3874-3882.
[13] Wijesundara, M.; Azevedo, R. Silicon Carbide Microsystems for Harsh Environments; Springer Verlag: Berlin, 2011.
[14] Wolowacz, S. E.; Yon Hin, B. F. Y.; Lowe, C. R. Covalent electropolymerization of glucose oxidase in polypyrrole. Anal. Chem. 1992, 64, 1541-1545.
[15] Darwish, H. M. B.; Okur, S. CO adsorption kinetics of ferrocene-conjugated polypyrrole using quartz microbalance technique. Sens. Actuators B Chem. 2014, 200, 325-331.
[16] M. S, enel, Construction of reagentless glucose biosensor based on ferrocene.
[17] Conjugated polypyrrole, Synthetic Met., 161 (2011) 1861–1868.
[18] Li, Z.; Blum, F. D.; Bertino, M. F.; Kim, C. Understanding the response of nanostructured polyaniline gas sensors. Sens. Actuators B Chem. 2013, 183, 419-427.
[19] Charlesworth, J. M.; Partridge, A. C.; Garrard, N. Mechanistic studies on the interactions between poly (pyrrole) and organic vapors. J. Phys. Chem. 1993, 97, 5418-5423.
[20] Fick, A. Ueber diffusion. Annalen der Physik. 1855, 170, 59–86.
[21] Kim, S. R.; Choi, S. A.; Kim, J. D.; Kim, K. J; Lee, C.; Rhee, S. B. Preparation of polythiophene LB films and their gas sensitivities by the quartz crystal microbalance. Synth. Met. 1995, 71, 2027-2028.
[22] Harsányi, G. Polymer films in sensor applications: a review of present uses and future possibilities. Sensor Rev. 2000, 20, 98-105.
Cite This Article
  • APA Style

    Hamida MB Darwish, Salih Okur. (2017). Improving the CO Sensing Properties of Ferrocene Modified Polypyrrole/Silicon Carbide Nanocomposite Films Synthesized by Electrochemical Deposition. American Journal of Nanosciences, 3(1), 1-8. https://doi.org/10.11648/j.ajn.20170301.11

    Copy | Download

    ACS Style

    Hamida MB Darwish; Salih Okur. Improving the CO Sensing Properties of Ferrocene Modified Polypyrrole/Silicon Carbide Nanocomposite Films Synthesized by Electrochemical Deposition. Am. J. Nanosci. 2017, 3(1), 1-8. doi: 10.11648/j.ajn.20170301.11

    Copy | Download

    AMA Style

    Hamida MB Darwish, Salih Okur. Improving the CO Sensing Properties of Ferrocene Modified Polypyrrole/Silicon Carbide Nanocomposite Films Synthesized by Electrochemical Deposition. Am J Nanosci. 2017;3(1):1-8. doi: 10.11648/j.ajn.20170301.11

    Copy | Download

  • @article{10.11648/j.ajn.20170301.11,
      author = {Hamida MB Darwish and Salih Okur},
      title = {Improving the CO Sensing Properties of Ferrocene Modified Polypyrrole/Silicon Carbide Nanocomposite Films Synthesized by Electrochemical Deposition},
      journal = {American Journal of Nanosciences},
      volume = {3},
      number = {1},
      pages = {1-8},
      doi = {10.11648/j.ajn.20170301.11},
      url = {https://doi.org/10.11648/j.ajn.20170301.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajn.20170301.11},
      abstract = {In this study, SiC nanoparticles 40 nm in diameter were added to ferrocene-modified conducting polymer (Fc-PPy) films to improve the signal/noise ratio of a sensor. The increased porosity of the Fc-PPy/SiC nanocomposite film produces a larger active surface area with more active sites available for adsorption. Electrochemical deposition was used to fabricate nanocomposite films (PPy, Fc-PPy, PPy/SiC and Fc-PPy/SiC), on both QCM and interdigitated electrodes, to measure CO concentration. All nanocomposites were characterized using XRD, SEM and TEM. The grain sizes of the nanocomposites were measured to be between 100 nm and 500 nm after electrochemical polymerization coating. IDE chemiresistor sensors and QCM piezoelectric sensors were used to investigate the potential sensing mechanisms and adsorption-desorption kinetics of Fc-PPy/SiC nanocomposite films and to compare these films with bare PPy films. The sensitivity of Fc-PPy/SiC nanocomposite sensors to CO gas was significantly improved by the effects of the chemical activation of SiC catalyst nanoparticle additives and ferrocene modified conducting polymers.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Improving the CO Sensing Properties of Ferrocene Modified Polypyrrole/Silicon Carbide Nanocomposite Films Synthesized by Electrochemical Deposition
    AU  - Hamida MB Darwish
    AU  - Salih Okur
    Y1  - 2017/03/22
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajn.20170301.11
    DO  - 10.11648/j.ajn.20170301.11
    T2  - American Journal of Nanosciences
    JF  - American Journal of Nanosciences
    JO  - American Journal of Nanosciences
    SP  - 1
    EP  - 8
    PB  - Science Publishing Group
    SN  - 2575-4858
    UR  - https://doi.org/10.11648/j.ajn.20170301.11
    AB  - In this study, SiC nanoparticles 40 nm in diameter were added to ferrocene-modified conducting polymer (Fc-PPy) films to improve the signal/noise ratio of a sensor. The increased porosity of the Fc-PPy/SiC nanocomposite film produces a larger active surface area with more active sites available for adsorption. Electrochemical deposition was used to fabricate nanocomposite films (PPy, Fc-PPy, PPy/SiC and Fc-PPy/SiC), on both QCM and interdigitated electrodes, to measure CO concentration. All nanocomposites were characterized using XRD, SEM and TEM. The grain sizes of the nanocomposites were measured to be between 100 nm and 500 nm after electrochemical polymerization coating. IDE chemiresistor sensors and QCM piezoelectric sensors were used to investigate the potential sensing mechanisms and adsorption-desorption kinetics of Fc-PPy/SiC nanocomposite films and to compare these films with bare PPy films. The sensitivity of Fc-PPy/SiC nanocomposite sensors to CO gas was significantly improved by the effects of the chemical activation of SiC catalyst nanoparticle additives and ferrocene modified conducting polymers.
    VL  - 3
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Faculty of Sciences, King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia

  • Department of Material Science and Engineering, Faculty of Engineering, Izmir Katip Celebi University, Izmir, Turkey

  • Sections