Plausible Approach for Rapid Detection of SARS-CoV-2 Virus by Magnetic Nanoparticle Based Biosensors
American Journal of Nanosciences
Volume 6, Issue 2, June 2020, Pages: 6-13
Received: Jun. 22, 2020; Accepted: Jul. 3, 2020; Published: Jul. 23, 2020
Views 40      Downloads 158
Authors
Md. Aminul Islam, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
Md. Ziaul Ahsan, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh; Department of Physics, Military Institute of Science and Technology, Dhaka, Bangladesh
Article Tools
Follow on us
Abstract
A new pandemic named as COVID-2019 (coronavirus disease 2019) has stunned the world. This pandemic situation arises due to an enormous death toll of human lives across the world by the infection of SARS-CoV-2 that results in pneumonia-associated respiratory syndrome. It is repentantly observed to speedy spread over the world day by day because of need in rapid detection, proper medication, and proven treatment. Since it's evolved in November 2019, scientists were engaged to find its genome code. However, the current efforts of the scientist (both physical and biological) in the world is to invent specific antiviral drugs and physical therapeutic against COVID-19 and rapid detection method. Hence we have tried to discuss in this report rapid detection system of the viral genome like +ssRNA, and S (spike) - protein containing into SARS-CoV-2 by magnetic nanoparticles (MNPs). To detect SARS-CoV-2 pathogens, giant magnetoresistive (GMR) biosensor along with MNPs may play a significant role. We expect that this detection system will be an effective challenge to control the outbreak of COVID-19.
Keywords
COVID-19, Magnetic Nanoparticle, GMR
To cite this article
Md. Aminul Islam, Md. Ziaul Ahsan, Plausible Approach for Rapid Detection of SARS-CoV-2 Virus by Magnetic Nanoparticle Based Biosensors, American Journal of Nanosciences. Vol. 6, No. 2, 2020, pp. 6-13. doi: 10.11648/j.ajn.20200602.11
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Na, H. B., Song, I. C., & Hyeon, T. (2009). Inorganic Nanoparticles for MRI Contrast Agents. Advanced Materials, 21 (21), 2133–2148.
[2]
Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26 (18), 3995–4021.
[3]
Takafuji, M., Ide, S., Ihara, H., & Xu, Z. (2004). Preparation of Poly (1-vinylimidazole)-Grafted Magnetic Nanoparticles and Their Application for Removal of Metal Ions. Chemistry of Materials, 16 (10), 1977–1983.
[4]
Sun, S., Murray, C. B., Weller, D., Folks, L., Moser, A. (2000). MonodisperseFePt Nanoparticles and Ferromagnetic FePtNanocrystalSuperlattices. Science, 287 (5460), 1989–1992.
[5]
Guo, T., Lin, M., Huang, J., Zhou, C., Tian, W., Yu, H., … Feng, X. (2018). The Recent Advances of Magnetic Nanoparticles in Medicine. Journal of Nanomaterials, 2018, 1–8.
[6]
Dudek, M. R., Dudek, K. K., Wolak, W., Wojciechowski, K. W., & Grima, J. N. (2019). Magnetocaloric materials with ultra-small magnetic nanoparticles working at room temperature. Scientific Reports, 9 (1), 17607.
[7]
Ale Ebrahim, S., Ashtari, A., Pedram, M. Z., Nader Ale Ebrahim N. (2019). Publication Trends in Drug Delivery and Magnetic Nanoparticles. Nanoscale Res Lett 14, 164.
[8]
Yang, W., Rehman, S., Chu, X., Hou, Y., & Gao, S. (2015). Transition Metal (Fe, Co and Ni) Carbide and Nitride Nanomaterials: Structure, Chemical Synthesis and Applications. Chem NanoMat, 1 (6), 376–398.
[9]
Reddy, L. H., Arias, J. L., Nicolas, J., & Couvreur, P. (2012). Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 112 (11), 5818–5878.
[10]
Lu, L., Wang, X., Xiong, C., & Yao, L. (2015). Recent advances in biological detection with magnetic nanoparticles as a useful tool. Science China Chemistry, 58 (5), 793–809.
[11]
Chou, T.-C., Hsu, W., Wang, C.-H., Chen, Y.-J., & Fang, J.-M. (2011). Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry. Journal of Nanobiotechnology, 9 (1), 52.
[12]
Barnett, J. M., Monnier, B. M., Tyler, S., West, D., Ballantine-Dykes, H., Regan, E., …Luxton, R. (2020). Initial trail results of a magnetic biosensor for the rapid detection of Porcine Reproductive and Respiratory Virus (PRRSV) infection. Sensing and Bio-Sensing Research, 27, 100315.
[13]
Wu, K., Liu, J., Saha, R., Su, D., Krishna, V. D., Cheeran, M. C-J and Wang, J-P. (2019). Detection of Influenza A Virus Nucleoprotein Through the Self-Assembly of Nanoparticles in Magnetic Particle Spectroscopy-Based Bioassays: A Method for Rapid, Sensitive, and Wash-free Magnetic Immunoassays. https://arxiv.org/abs/1907.06000.
[14]
Zhao, Z., Cui, H., Song, W., Ru, X., Zhou, W., Yu, X. (2020). A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. https://www.biorxiv.org/content/10.1101/2020.02.22.961268v1.
[15]
Colombo, M., Carregal-Romero, S., Casula, M. F., Gutiérrez, L., Morales, M. P., Böhm, I. B., …Parak, W. J. (2012). Biological applications of magnetic nanoparticles. Chemical Society Reviews, 41 (11), 4306.
[16]
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108 (6), 2064–2110.
[17]
Gijs, M. A. M., Lacharme, F., & Lehmann, U. (2010). Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis. Chemical Reviews, 110 (3), 1518–1563.
[18]
Wang, H., Li, X., Li, T., Zhang, S., Wang, L., Wu, X., & Liu, J. (2020). The genetic sequence, origin, and diagnosis of SARS-CoV-2. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, 1–7. Advance online publication.
[19]
Nikaeen, G, Abbaszadeh, S, Yousefinejad, S. (2020). Application of nanomaterials in treatment, anti-infection and detection of coronaviruses [published online ahead of print, 2020 May 7]. Nanomedicine (Lond).10.2217/nnm-2020-0117. doi: 10.2217/nnm-2020-0117.
[20]
Khailany, RA., Safdar, M., Ozaslan, M. (2020) Genomic characterization of a novel SARS-CoV-2 [published online ahead of print, 2020 Apr 16]. Gene Rep.; 19: 100682.
[21]
De Wit, E., van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14 (8), 523–534.
[22]
Andrew M. Q. King, Michael J. Adams, Elliot J. Lefkowitz. (2011) Coronaviridae, Ch 24, 435-461.
[23]
Molenkamp, R., & Spaan, W. J. M. (1997). Identification of a Specific Interaction between the Coronavirus Mouse Hepatitis Virus A59 Nucleocapsid Protein and Packaging Signal. Virology, 239 (1), 78–86.
[24]
Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., … Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research, 7 (1).
[25]
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. https://doi.org/10.1038/s41586-020-2012-7.
[26]
Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., & Li, M. (2006). Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research Part A, 80A (2), 333–341.
[27]
Jiao, F., Jumas, J.-C., Womes, M., Chadwick, A. V., Harrison, A., & Bruce, P. G. (2006). Synthesis of Ordered Mesoporous Fe3O4and γ-Fe2O3with Crystalline Walls Using Post-Template Reduction/Oxidation. Journal of the American Chemical Society, 128 (39), 12905–12909.
[28]
Wang, G., Wang, C., Dou, W., Ma, Q., Yuan, P., & Su, X. (2009). The Synthesis of Magnetic and Fluorescent Bi-functional Silica Composite Nanoparticles via Reverse Microemulsion Method. Journal of Fluorescence, 19 (6), 939–946.
[29]
Han, Y. C., Cha, H. G., Kim, C. W., Kim, Y. H., & Kang, Y. S. (2007). Synthesis of Highly Magnetized Iron Nanoparticles by a Solventless Thermal Decomposition Method. The Journal of Physical Chemistry C, 111 (17), 6275–6280.
[30]
Kang, M. (2003). Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol. Journal of Molecular Catalysis A: Chemical, 197 (1-2), 173–183.
[31]
Ai, L., Zhang, C., & Chen, Z. (2011). Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. Journal of Hazardous Materials, 192 (3), 1515–1524.
[32]
Teja, A. S., & Koh, P.-Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55 (1-2), 22–45.
[33]
Taniguchi, I. (2005). Powder properties of partially substituted LiMxMn2−xO4 (M=Al, Cr, Fe and Co) synthesized by ultrasonic spray pyrolysis. Materials Chemistry and Physics, 92 (1), 172–179.
[34]
Kolahalam, L. A., KasiViswanath, I. V., Diwakar, B. S., Govindh, B., Reddy, V., & Murthy, Y. L. N. (2019). Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings. doi: 10.1016/j.matpr.2019.07.371.
[35]
Polshettiwar, V., Baruwati, B., & Varma, R. S. (2009). Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis. ACS Nano, 3 (3), 728–736.
[36]
Wei, H., Yang, W., Xi, Q., & Chen, X. (2012). Preparation of Fe3O4@graphene oxide core–shell magnetic particles for use in protein adsorption. Materials Letters, 82, 224–226.
[37]
Bychko, I. B., Kalishin, E. Y., & Strizhak, P. E. (2011). Effect of the size of Fe@Fe3O4 nanoparticles deposited on carbon nanotubes on their oxidation–reduction characteristics. Theoretical and Experimental Chemistry, 47 (4), 219–224.
[38]
Kelly, C. H. W., & Lein, M. (2016). Choosing the right precursor for thermal decomposition solution-phase synthesis of iron nanoparticles: tunable dissociation energies of ferrocene derivatives. Physical Chemistry Chemical Physics, 18 (47), 32448–32457.
[39]
Khan, Kishwar&Rehman, Sarish& Rahman, Hafeez& Khan, Qasim. (2014). Synthesis and application of magnetic nanoparticles.
[40]
Odularu, A. T. (2018). Metal Nanoparticles: Thermal Decomposition, Biomedicinal Applications to Cancer Treatment, and Future Perspectives. Bioinorganic Chemistry and Applications, 2018, 1–6.
[41]
MAITY, D., DING, J., & XUE, J.-M. (2008). Synthesis Of Magnetite Nanoparticles By Thermal Decomposition: Time, Temperature, Surfactant And Solvent Effects. Functional Materials Letters, 01 (03), 189–193.
[42]
Salazar-Alvarez, G., Qin, J., Šepelák, V., Bergmann, I., Vasilakaki, M., Trohidou, K. N., …Nogués, J. (2008). Cubic versus Spherical Magnetic Nanoparticles: The Role of Surface Anisotropy. Journal of the American Chemical Society, 130 (40), 13234–13239.
[43]
Obaidat, I. M., Narayanaswamy, V., Alaabed, S., Sambasivam, S., & MuraleeGopi, C. V. V. (2019). Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. Magnetochemistry, 5 (4), 67.
[44]
Rabenau, A. (1985). The Role of Hydrothermal Synthesis in Preparative Chemistry. AngewandteChemie International Edition in English, 24 (12), 1026–1040.
[45]
Adschiri, T., Hakuta, Y., Sue, K., & Arai, K. (2001). Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. Journal of Nanoparticle Research, 3, 227–235.
[46]
Yu, J., & Yu, X. (2008). Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres. Environmental Science & Technology, 42 (13), 4902–4907.
[47]
Yang, T., Li, Y., Zhu, M. Y., Li, Y. B., Huang, J., Jin, H. M., & Hu, Y. M. (2010). Room-temperature ferromagnetic Mn-doped ZnOnanocrystal synthesized by hydrothermal method under high magnetic field. Materials Science and Engineering: B, 170 (1-3), 129–132.
[48]
Hu, J. Q., & Bando, Y. (2003). Growth and optical properties of single-crystal tubular ZnO whiskers. Applied Physics Letters, 82 (9), 1401–1403.
[49]
Wang, X., Zhuang, J., Peng, Q., & Li, Y. (2005). A general strategy for nanocrystal synthesis. Nature, 437 (7055), 121–124.
[50]
Daou, T. J., Pourroy, G., Bégin-Colin, S., Grenèche, J. M., Ulhaq-Bouillet, C., Legaré, P., …Rogez, G. (2006). Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles. Chemistry of Materials, 18 (18), 4399–4404.
[51]
Barick, K. C., & Hassan, P. A. (2012). Glycine passivated Fe3O4 nanoparticles for thermal therapy. Journal of Colloid and Interface Science, 369 (1), 96–102.
[52]
Bhayani, K. R., Rajwade, J. M., & Paknikar, K. M. (2012). Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles: invitroevaluation of heat shock protein response. Nanotechnology, 24 (1), 015102.
[53]
Thorat, N. D., Otari, S. V., Patil, R. M., Khot, V. M., Prasad, A. I., Ningthoujam, R. S., & Pawar, S. H. (2013). Enhanced colloidal stability of polymer coated La0.7Sr0.3MnO3 nanoparticles in physiological media for hyperthermia application. Colloids and Surfaces B: Biointerfaces, 111, 264–269.
[54]
Jadhav, S. V., Nikam, D. S., Khot, V. M., Thorat, N. D., Phadatare, M. R., Ningthoujam, R. S., … Pawar, S. H. (2013). Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New Journal of Chemistry, 37 (10), 3121.
[55]
Jadhav, S. V., Nikam, D. S., Mali, S. S., Hong, C. K., & Pawar, S. H. (2014). The influence of coating on the structural, magnetic and colloidal properties of LSMO manganite and the heating mechanism for magnetic fluid hyperthermia application. New Journal of Chemistry, 38 (8), 3678.
[56]
Khoee, S., & Kavand, A. (2014). A new procedure for preparation of polyethylene glycol-grafted magnetic iron oxide nanoparticles. Journal of Nanostructure in Chemistry, 4 (3), 111.
[57]
Gu, H., Tadakamalla, S., Zhang, X., Huang, Y., Jiang, Y., Colorado, H. A.,… Guo, Z. (2013). Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes. J. Mater. Chem. C, 1 (4), 729–743.
[58]
Li, H., Jin, Z., Cho, S., Ko, S. Y., Park, J.-O., & Park, S. (2016). Polyethylenimine-coated magnetic nanoparticles with improved biocompatibility for hyperthermia. 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).
[59]
Albornoz, C., & Jacobo, S. E. (2006). Preparation of a biocompatible magnetic film from an aqueous ferrofluid. Journal of Magnetism and Magnetic Materials, 305 (1), 12–15.
[60]
Sahoo, Y., Goodarzi, A., Swihart, M. T., Ohulchanskyy, T. Y., Kaur, N., Furlani, E. P., & Prasad, P. N. (2005). Aqueous Ferrofluid of Magnetite Nanoparticles: Fluorescence Labeling and Magnetophoretic Control. The Journal of Physical Chemistry B, 109 (9), 3879–3885.
[61]
Lu, A.-H., Salabas, E. L., & Schüth, F. (2007). Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition, 46 (8), 1222–1244.
[62]
He, H., Liu, H., Zhou, K., Wang, W., & Rong, P. (2006). Characteristics of magnetic Fe3O4 nanoparticles encapsulated with human serum albumin. Journal of Central South University of Technology, 13 (1), 6–11.
[63]
Mikhaylova, M., Kim, D. K., Berry, C. C., Zagorodni, A., Toprak, M., Curtis, A. S. G., & Muhammed, M. (2004). BSA Immobilization on Amine-Functionalized Superparamagnetic Iron Oxide Nanoparticles. Chemistry of Materials, 16 (12), 2344–2354.
[64]
Lewin, M., Carlesso, N., Tung, C.-H., Tang, X.-W., Cory, D., Scadden, D. T., & Weissleder, R. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 18 (4), 410–414.
[65]
Tiefenauer, L. X., Kuehne, G., & Andres, R. Y. (1993). Antibody-magnetite nanoparticles: In vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjugate Chemistry, 4 (5), 347–352.
[66]
Nam, J. M., Stoeva, S. I., & Mirkin, C. A, (2004). Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity. J. Am. Chem. Soc. 126, 5932 (2004).
[67]
Weizmann, Y., Patolsky, F., Lioubashevski, O., & Willner, I. (2004). Magneto-Mechanical Detection of Nucleic Acids and Telomerase Activity in Cancer Cells. Journal of the American Chemical Society, 126 (4), 1073–1080.
[68]
Wu, W., He, Q., & Jiang, C. (2008). Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Research Letters, 3 (11), 397–415.
[69]
Chunfu, Z., Jinquan, C., Duanzhi, Y., Yongxian, W., Yanlin, F., & Jiajü, T. (2004). Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy. Applied Radiation and Isotopes, 61 (6), 1255–1259.
[70]
Josephson, L., Perez, J. M., & Weissleder, R. (2001). Magnetic Nanosensors for the Detection of Oligonucleotide Sequences. AngewandteChemie International Edition, 40 (17), 3204–3206.
[71]
Rosi, N. L., & Mirkin, C. A. (2005). Nanostructures in Biodiagnostics. Chemical Reviews, 105 (4), 1547–1562.
[72]
Yi, D. K., Selvan, S. T., Lee, S. S., Papaefthymiou, G. C., Kundaliya, D., & Ying, J. Y. (2005). Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots. Journal of the American Chemical Society, 127 (14), 4990–4991.
[73]
Mandal, M., Kundu, S., Ghosh, S. K., Panigrahi, S., Sau, T. K., Yusuf, S. M., & Pal, T. (2005). Magnetite nanoparticles with tunable gold or silver shell. Journal of Colloid and Interface Science, 286 (1), 187–194.
[74]
Wang, Z., Guo, H., Yu, Y., & He, N. (2006). Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction. Journal of Magnetism and Magnetic Materials, 302 (2), 397–404.
[75]
Stoeva, S. I., Huo, F., Lee, J.-S., & Mirkin, C. A. (2005). Three-Layer Composite Magnetic Nanoparticle Probes for DNA. Journal of the American Chemical Society, 127 (44), 15362–15363.
[76]
Juzenas, P., Generalov, R., Juzeniene, A., & Moan, J. (2008). Generation of Nitrogen Oxide and Oxygen Radicals by Quantum Dots. Journal of Biomedical Nanotechnology, 4 (4), 450–456.
[77]
Li, Y., Liu, Y., Tang, J., Lin, H., Yao, N., Shen, X., … Zhang, X. (2007). Fe3O4@Al2O3 magnetic core–shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. Journal of Chromatography A, 1172 (1), 57–71.
[78]
Li, Y., Wu, J., Qi, D., Xu, X., Deng, C., Yang, P., & Zhang, X. (2008). Novel approach for the synthesis of Fe3O4@TiO2core–shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chem. Commun., (5), 564–566.
[79]
Wang, Q., Lin, T., Tang, L., Johnson, J. E., & Finn, M. G. (2002). Icosahedral Virus Particles as Addressable Nanoscale Building Blocks. AngewandteChemie International Edition, 41 (3), 459–462.
[80]
Schubert, R., Herzog, S., Trenholm, S., Roska, B., & Müller, D. J. (2019). Magnetically guided virus stamping for the targeted infection of single cells or groups of cells. Nature Protocols. doi: 10.1038/s41596-019-0221-z.
[81]
Perez, J. M., Simeone, F. J., Saeki, Y., Josephson, L., & Weissleder, R. (2003). Viral-Induced Self-Assembly of Magnetic Nanoparticles Allows the Detection of Viral Particles in Biological Media. Journal of the American Chemical Society, 125 (34), 10192–10193.
[82]
Hao, R., Xing, R., Xu, Z., Hou, Y., Gao, S., & Sun, S. (2010). Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Advanced Materials, 22 (25), 2729–2742.
[83]
Frey, N. A., Peng, S., Cheng, K., & Sun, S. (2009). Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chemical Society Reviews, 38 (9), 2532.
[84]
Mukundan, H., Anderson, A., Grace, W. K., Grace, K., Hartman, N., Martinez, J., & Swanson, B. (2009). Waveguide-Based Biosensors for Pathogen Detection. Sensors, 9 (7), 5783–5809.
[85]
Lu, X., Dong, X., Zhang, K., Han, X., Fang, X., & Zhang, Y. (2013). A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. The Analyst, 138 (2), 642–650.
[86]
Li, M., Cushing, S. K., Liang, H., Suri, S., Ma, D., & Wu, N. (2013). PlasmonicNanorice Antenna on Triangle Nanoarray for Surface-Enhanced Raman Scattering Detection of Hepatitis B Virus DNA. Analytical Chemistry, 85 (4), 2072–2078.
[87]
Lazerges, M., & Bedioui, F. (2013). Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Analytical and Bioanalytical Chemistry, 405 (11), 3705–3714.
[88]
Iost, R. M., Madurro, J. M., Brito-Madurro, A. G., Nantes, I. L., Caseli, L., Crespilho, F. N. (2011). Strategies of nano-manipulation for application in elec¬trochemical biosensors. Int J Electrochem Sci. 6 (7), 2965–2997.
[89]
Wang, R., & Li, Y. (2013). Hydrogel based QCM aptasensor for detection of avian influenzavirus. Biosensors and Bioelectronics, 42, 148–155.
[90]
Dultsev, F. N., & Tronin, A. V. (2015). Rapid sensing of hepatitis B virus using QCM in the thickness shear mode. Sensors and Actuators B: Chemical, 216, 1–5.
[91]
Timurdogan, E., Alaca, B. E., Kavakli, I. H., & Urey, H. (2011). MEMS biosensor for detection of Hepatitis A and C viruses in serum. Biosensors and Bioelectronics, 28 (1), 189–194.
[92]
Inci, F., Tokel, O., Wang, S., Gurkan, U. A., Tasoglu, S., Kuritzkes, D. R., & Demirci, U. (2013). Nanoplasmonic Quantitative Detection of Intact Viruses from Unprocessed Whole Blood. ACS Nano, 7 (6), 4733–4745.
[93]
Riedel, T., Rodriguez-Emmenegger, C., de los Santos Pereira, A., Bědajánková, A., Jinoch, P., Boltovets, P. M., & Brynda, E. (2014). Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosensors and Bioelectronics, 55, 278–284.
[94]
Yang, S. Y., Wang, W. C., Lan, C. B., Chen, C. H., Chieh, J. J., Horng, H. E.,… Chung, W. C. (2010). Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers. Journal of Virological Methods, 164 (1-2), 14–18.
[95]
Baselt, D. R., Lee, G. U., Natesan, M., Metzger, S. W., Sheehan, P. E., & Colton, R. J. (1998). A biosensor based on magnetoresistance technology1This paper was awarded the Biosensors & Bioelectronics Award for the most original contribution to the Congress. 1. Biosensors and Bioelectronics, 13 (7-8), 731–739.
[96]
Schotter, J., Kamp, P.., Becker, A., Pühler, A., Reiss, G., & Brückl, H. (2004). Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosensors and Bioelectronics, 19 (10), 1149–1156.
[97]
Millen, R. L., Kawaguchi, T., Granger, M. C., Porter, M. D., & Tondra, M. (2005). Giant Magnetoresistive Sensors and Superparamagnetic Nanoparticles: A Chip-Scale Detection Strategy for Immunosorbent Assays. Analytical Chemistry, 77 (20), 6581–6587.
[98]
Hall, D. A., Gaster, R. S., Lin, T., Osterfeld, S. J., Han, S., Murmann, B., & Wang, S. X. (2010). GMR biosensor arrays: A system perspective. Biosensors and Bioelectronics, 25 (9), 2051–2057.
[99]
Loureiro, J., Ferreira, R., Cardoso, S., Freitas, P. P., Germano, J., Fermon, C., … Rivas, J. (2009). Toward a magnetoresistive chip cytometer: Integrated detection of magnetic beads flowing at cm/s velocities in microfluidic channels. Applied Physics Letters, 95 (3), 034104.
[100]
Gaster, R. S., Xu, L., Han, S.-J., Wilson, R. J., Hall, D. A., Osterfeld, S. J., … Wang, S. X. (2011). Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nature Nanotechnology, 6 (5), 314–320.
[101]
Wang, W., Wang, Y., Tu, L., Feng, Y., Klein, T., & Wang, J.-P. (2014). Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Scientific Reports, 4 (1): 5716.
[102]
Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B, 39 (7), 4828–4830.
[103]
Krishna, V. D., Wu, K., Perez, A. M., & Wang, J.-P. (2016). Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus. Frontiers in Microbiology, 7.
[104]
Nabaei, V., Chandrawati, R., & Heidari, H. (2018). Magnetic biosensors: Modelling and simulation. Biosensors and Bioelectronics, 103, 69–86.
[105]
Zhang, X., Reeves, D. B., Perreard, I. M., Kett, W. C., Griswold, K. E., Gimi, B., & Weaver, J. B. (2013). Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion. Biosensors and Bioelectronics, 50, 441–446.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186