American Journal of Modern Energy

| Peer-Reviewed |

Gasification – A Process for Energy Recovery and Disposal of Municipal Solid Waste

Received: 26 September 2016    Accepted: 14 October 2016    Published: 02 November 2016
Views:       Downloads:

Share This Article

Abstract

The paper offers an outline of Gasification technology, starting from basic aspects of the process and arriving to a comparative examination of Gasification and Incineration and the environmental applications of Gasification technology for Municipal Solid Waste management (MSW) and also considered limitations of Gasification Technology. Gasification is waste to energy technology that is able to convert a variety of waste materials into renewable and alternative energy products. The technology can process nearly any carbonaceous material, transforming it into forms of usable energy that can be consumed or sold easily. This review paper indicates that Gasification technology can help the world both manage its waste and produce the energy and products needed to fuel economic growth. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

DOI 10.11648/j.ajme.20160206.11
Published in American Journal of Modern Energy (Volume 2, Issue 6, December 2016)
Page(s) 38-42
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Waste-to-Energy, Gasification, Municipal Solid Waste, Syngas, Incineration

References
[1] Dimpal Vij, Urbanization and solid waste management in India: Present practices and future challenges; 2012, International Conference on Emerging Economies – Prospects and Challenges.
[2] Edbertho, Plasma Processing of Municipal Solid Waste, 2004; Brazilian Journal of Physics, vol. 34, no. 4B.
[3] G. Galeno, Waste to electricity through integrated plasma gasification/fuel cell system, 2011; International Journal of Hydrogen Energy-36 9.
[4] Jigisha Parikh, A correlation for calculating elemental composition from proximate analysis of biomass materials, 2007; Fuel 86.
[5] K. Moustakas, D. Fatta, S. Malamis, K. Haralambous, M. Loizidou, Demonstration plasma gasification/ vitrification system for effective hazardous waste management, 2005; Journal of hazardous waste material.
[6] Liqing Yang, Solid waste plasma disposal plant, 2011; Journal of Electrostatics 69.
[7] Mountouris, E. Voutsas, D. Tassios, Plasma gasification of sewage sludge process development and energy optimization, 2008; Journal of Energy conservation and management.
[8] Patel Munna Lal, Plasma Gasification: A Sustainable Solution for the Municipal Solid Waste, 2012; International Journal of Environmental Sciences, Volume 3, No 1.
[9] Pranolo H., the potential of application technology gasification with corn biomass as energy alternative in the village, 2013; National seminar of renewable energy in Indonesia, Jendral Sudirman of University, Purwkerto.
[10] Qinglin Zhang, Mathematical modeling of municipal solid waste plasma gasification fixed bed melting reactor, 2011; Doctoral Dissertation, Stockholm.
[11] Reed T. B., and Das A., Handbook of Biomass Downdraft Gasifier Engine Systems, 1988; Solar Energy Research Institute, Cole Boulevard, Golden, Colorado.
[12] Status Report of Municipal Solid Waste Management, 2014; Central Pollution Control Board.
[13] The Waste to Energy Solution, 2015; Gasification Technologies Council.
[14] World Bank, 2012; What a Waste.
Author Information
  • Green India Technological Alliance for Advances and Research, Surat, India

  • Green India Technological Alliance for Advances and Research, Surat, India

Cite This Article
  • APA Style

    Vishal Soni, Vatsal Naik. (2016). Gasification – A Process for Energy Recovery and Disposal of Municipal Solid Waste. American Journal of Modern Energy, 2(6), 38-42. https://doi.org/10.11648/j.ajme.20160206.11

    Copy | Download

    ACS Style

    Vishal Soni; Vatsal Naik. Gasification – A Process for Energy Recovery and Disposal of Municipal Solid Waste. Am. J. Mod. Energy 2016, 2(6), 38-42. doi: 10.11648/j.ajme.20160206.11

    Copy | Download

    AMA Style

    Vishal Soni, Vatsal Naik. Gasification – A Process for Energy Recovery and Disposal of Municipal Solid Waste. Am J Mod Energy. 2016;2(6):38-42. doi: 10.11648/j.ajme.20160206.11

    Copy | Download

  • @article{10.11648/j.ajme.20160206.11,
      author = {Vishal Soni and Vatsal Naik},
      title = {Gasification – A Process for Energy Recovery and Disposal of Municipal Solid Waste},
      journal = {American Journal of Modern Energy},
      volume = {2},
      number = {6},
      pages = {38-42},
      doi = {10.11648/j.ajme.20160206.11},
      url = {https://doi.org/10.11648/j.ajme.20160206.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajme.20160206.11},
      abstract = {The paper offers an outline of Gasification technology, starting from basic aspects of the process and arriving to a comparative examination of Gasification and Incineration and the environmental applications of Gasification technology for Municipal Solid Waste management (MSW) and also considered limitations of Gasification Technology. Gasification is waste to energy technology that is able to convert a variety of waste materials into renewable and alternative energy products. The technology can process nearly any carbonaceous material, transforming it into forms of usable energy that can be consumed or sold easily. This review paper indicates that Gasification technology can help the world both manage its waste and produce the energy and products needed to fuel economic growth. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Gasification – A Process for Energy Recovery and Disposal of Municipal Solid Waste
    AU  - Vishal Soni
    AU  - Vatsal Naik
    Y1  - 2016/11/02
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajme.20160206.11
    DO  - 10.11648/j.ajme.20160206.11
    T2  - American Journal of Modern Energy
    JF  - American Journal of Modern Energy
    JO  - American Journal of Modern Energy
    SP  - 38
    EP  - 42
    PB  - Science Publishing Group
    SN  - 2575-3797
    UR  - https://doi.org/10.11648/j.ajme.20160206.11
    AB  - The paper offers an outline of Gasification technology, starting from basic aspects of the process and arriving to a comparative examination of Gasification and Incineration and the environmental applications of Gasification technology for Municipal Solid Waste management (MSW) and also considered limitations of Gasification Technology. Gasification is waste to energy technology that is able to convert a variety of waste materials into renewable and alternative energy products. The technology can process nearly any carbonaceous material, transforming it into forms of usable energy that can be consumed or sold easily. This review paper indicates that Gasification technology can help the world both manage its waste and produce the energy and products needed to fuel economic growth. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.
    VL  - 2
    IS  - 6
    ER  - 

    Copy | Download

  • Sections