Power of Simulation Extrapolation in Correction of Covariates Measured with Errors
International Journal of Data Science and Analysis
Volume 5, Issue 2, April 2019, Pages: 13-17
Received: Apr. 18, 2019; Accepted: May 21, 2019; Published: Jun. 5, 2019
Views 173      Downloads 30
Authors
Joseph Njuguna Karomo, Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
Samuel Musili Mwalili, Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
Anthony Wanjoya, Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
Article Tools
Follow on us
Abstract
Statistics is one of the most vibrant disciplines where research is inevitable. Most researches in statistics are concerned with the measurement of values of variables in order to make valid conclusions for decision making. Often, researchers do not use the exact values of the variables since it’s difficult to establish the exact value of variables during data collection. This study aimed at using simulation studies to ascertain the power of Simulation Extrapolation (SIMEX) in correcting the bias of coefficients of a logistic regression model with one covariate measured with error. The corrected coefficient values of the model can then be used to predict the exact values of the explanatory variable. The Mean Square Error and the coverage probability were used to test the adequacy of the different model's estimates. The study showed that the use of SIMEX with the quadratic fitting method would give significantly good estimates of the model’s predictors’ coefficients. For further studies, the researcher recommends the study to be done using other models and with multiple covariates measured with errors.
Keywords
Simulation Extrapolation, SIMEX, Measurement Errors, Berkson Error, Naive Estimator, Bias
To cite this article
Joseph Njuguna Karomo, Samuel Musili Mwalili, Anthony Wanjoya, Power of Simulation Extrapolation in Correction of Covariates Measured with Errors, International Journal of Data Science and Analysis. Vol. 5, No. 2, 2019, pp. 13-17. doi: 10.11648/j.ijdsa.20190502.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Fuller, Wayne A. Measurement error models. Vol. 305. John Wiley & Sons, 2009.
[2]
Cook, John R., and Leonard A. Stefanski. "Simulation-extrapolation estimation in parametric measurement error models." Journal of the American Statistical association 89, no. 428 (1994): 1314-1328.
[3]
Freedman, Laurence S., Douglas Midthune, Raymond J. Carroll, and Victor Kipnis. "A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression." Statistics in medicine 27, no. 25 (2008): 5195-5216.
[4]
Stefanski, Leonard A., and James R. Cook. "Simulation-extrapolation: the measurement error jackknife." Journal of the American Statistical Association 90, no. 432 (1995): 1247-1256.
[5]
Babanezhad, Manoochehr. "Measurement error and causal inference with instrumental variables." PhD diss., Ghent University, 2009.
[6]
Rudemo, Mats, David Ruppert, and J. C. Streibig. "Random-effect models in nonlinear regression with applications to bioassay." Biometrics (1989): 349-362.
[7]
Stefanski, Leonard A. "Measurement error models." Journal of the American Statistical Association 95, no. 452 (2000): 1353-1358.
[8]
Carroll, Raymond J., and Helmut Küchenhoff. "Approximative Methods for Regression Models with Errors in the Covariates." In XploRe: An Interactive Statistical Computing Environment, pp. 275-285. Springer, New York, NY, 1995.
[9]
Shang, Yi. "Measurement error adjustment using the SIMEX method: An application to student growth percentiles." Journal of Educational Measurement 49, no. 4 (2012): 446-465.
[10]
Weeding, Jennifer Lee. "Bayesian measurement error modeling with application to the area under the curve summary measure." PhD diss., Montana State University-Bozeman, College of Letters & Science, 2016.
[11]
Küchenhoff, Helmut, Samuel M. Mwalili, and Emmanuel Lesaffre. "A general method for dealing with misclassification in regression: The misclassification SIMEX." Biometrics 62, no. 1 (2006): 85-96.
[12]
Mwalili, Samuel Musili. "Bayesian and frequentist approaches to correct for misclassification error with applications to caries research." PhD diss., PhD thesis, Catholic University of Leuven, Leuven, Belgium, 2006.
[13]
Hasan, Mohammad Mahadi, Ashish Sharma, Fiona Johnson, Gregoire Mariethoz, and Alan Seed. "Correcting bias in radar Z–R relationships due to uncertainty in point rain gauge networks." Journal of hydrology 519 (2014): 1668-1676.
[14]
Tsamardinos, Ioannis, Amin Rakhshani, and Vincenzo Lagani. "Performance-estimation properties of cross-validation-based protocols with simultaneous hyper-parameter optimization." International Journal on Artificial Intelligence Tools 24, no. 05 (2015): 1540023.
[15]
Shao, Jun, and Dongsheng Tu. The jackknife and bootstrap. Springer Science & Business Media, 2012.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186