| Peer-Reviewed

G2EDPS's First Module & Its First Extension Modules

Received: 27 February 2017    Accepted: 29 March 2017    Published: 28 November 2017
Views:       Downloads:
Abstract

100% renewable worldwide power grid (Global Grid) system needs a Global Grid Electricity Demand Prediction System (G2EDPS) with very short, short, medium and long term forecasting consoles. This paper presents the 1st core module and its 10 extension modules in the long term prediction console. A type 1 Mamdani like Fuzzy Inference System (FIS) with 7 triangle membership functions and 49 rules is designed for 2 input and 1 output variables for a 100 year forecasting period. The maximum absolute percentage errors (MAP), the mean absolute percentage errors (MAPE), and the Symmetric MAPE (SMAPE) of the best core module and its extension modules are respectively 0, 24; 0, 08; 0, 05 and 0, 22; 0, 07; 0, 05.

Published in American Journal of Applied Scientific Research (Volume 3, Issue 4)
DOI 10.11648/j.ajasr.20170304.13
Page(s) 33-48
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Global Grid, Electricity Demand, Fuzzy Inference System, Mamdani, Prediction

References
[1] Friends of the Supergrid, “Roadmap to the Supergrid Technologies Final Report 2012” http://www.cesi.it/news_ideas/ideas/Documents/FOSG%20%20WG2%20Final-report.pdf (2012).
[2] Chatzivasileiadis S, Ernst D, and Andersson G, “The Global Grid, Renewable Energy”, Vol.57, pp.372–383 (2013) doi:10.1016/j.renene.2013.01.032.
[3] Overbye, T. J., Starr, C., Grant, P. M., and Schneider, T. R., “National Energy Supergrid Workshop Report. Crowne Plaza Cabana Palo Alto Hotel, Palo Alto, California”. www.supergrid.illinois.edu/sg1/SuperGridReportFinal.pdf. (2002)
[4] DESERTEC Foundation: http://www.desertec.org/ accessed by 11/06/2015. (2015)
[5] Mano, S., Ovgor, B., Samadov, Z., Pudlik, M., Jülch, V., Sokolov, D., and Yoon, J. Y., “Gobitec and Asian Super Grid for renewable energies in Northeast Asia. Spotinov print Ltd.” (2014)
[6] Seliger, B., and Kim, G. E., “Tackling climate change, increasing energy security, engaging North Korea and moving forward Northeast Asian integration – “Green Growth” in Korea and the Gobitec project. Gobitec Outline Paper 1-03 10112009.” (2009)
[7] Saracoglu B. O, “Global Grid Prediction Systems”, ResearchGate DOI: 10.13140/RG.2.1.3575.3040, 2016.
[8] Soliman S. A, and Al-Kandari A M, “Electrical load forecasting: modeling and model construction (Elsevier)” (2010).
[9] Makridakis, S., Wheelwright, S.: Integrating forecasting and planning. Long Range Planning, Vol:6, No:3, pp.53–63. (1973)
[10] Das, J. K.: Statistics for Business Decisions, Academic Publishers, Bhawani Dutta Lane, Kolkata. (2012)
[11] Jain, C. L., Malehorn, J. eds.: Practical guide to business forecasting. Institute of Business Forec. (2005)
[12] Chaturvedi, D. K.: Soft computing: techniques and its applications in electrical engineer-ing. Vol. 103. Springer. (2008)
[13] Scilab (Scilab 5.5.2), http://www.scilab.org/ (accessed 02/02/2016), 2016.
[14] R (R version 3.2.2), https://www.r-project.org/ (accessed 02/02/2016), 2016.
[15] RStudio (RStudio Version 0.99.491), https://www.rstudio.com/ (accessed 02/02/2016), 2016
[16] Microsoft Office Excel (Microsoft Office 2007), https://products.office.com/en-in/excel (accessed 02/02/2016), 2016
[17] Apache OpenOffice Calc (Apache OpenOffice 4.1.2), http://www.openoffice.org/product/calc.html (accessed 02/02/2016), 2016
[18] ACM Digital Library, http://dl.acm.org/
[19] ASCE Online Research Library, http://ascelibrary.org/
[20] American Society of Mechanical Engineers, http://asmedigitalcollection.asme.org/
[21] Cambridge Journals Online, http://journals.cambridge.org
[22] Directory of Open Access Journals, http://doaj.org
[23] Emerald Insight, http://www.emeraldinsight.com/
[24] Google Scholar, http://scholar.google.com.tr/
[25] Hindawi Publishing Corporation, http://www.hindawi.com/
[26] Inderscience Publishers, http://www.inderscience.com/
[27] Journal of Industrial Engineering and Management, http://www.jiem.org/index.php/jiem
[28] Science Direct, http://www.sciencedirect.com
[29] Springer, http://www.springer.com/gp/
[30] Taylor & Francis Online/Journals, http://www.tandfonline.com/
[31] Wiley-Blackwell/Wiley Online Library, http://onlinelibrary.wiley.com/
[32] World Scientific Publishing, http://www.worldscientific.com/
[33] More, B. R.: Electric Load Forecasting in Smart Grid Environment and Classification of Methods. International Journal of Scientific & Engineering Research, Vol: 5, No: 7, pp.49–52. (2014).
[34] Kaur, J., Brar, Y. S.: Short Term Load Forecasting using Fuzzy Logic of 220kV Transmission Line At PSTCL 220kV Sub-Station Pakhowal, Ludhiana, Punjab. International Journal of Engineering Research & Technology, Vol: 3, No: 9, pp.336–343. (2014).
[35] Ciabattoni, L., Grisostomi, M., Ippoliti, G., Longhi, S.: A Fuzzy Logic Tool for Household Electrical Consumption Modeling, Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, pp. 8022– 8027. (2013).
[36] Sachdeva, S., Singh, M., Singh, U. P., Arora, A. S.: Efficient Load Forecasting Optimized by Fuzzy Programming and OFDM Transmission. Advances in Fuzzy Systems, Vol: 2011, Article ID 326763, doi: 10.1155/2011/326763 (2011).
[37] Aggarwal, S. K., Kumar, M., Saini, L. M., Kumar, A.: Short-Term Load Forecasting in Deregulated Electricity Markets using Fuzzy Approach. Journal of Engineering and Technology, Vol: 1, No: 1, pp.24–30. (2015).
[38] Moreno-Chaparro, C., Salcedo-Lagos, J., Rivas, E. yOrjuela Canon, A.: A method for the monthly electricity demand forecasting in Colombia based on wavelet analysis and a nonlinear autoregressive model. Ingeniería, Vol.16, No.2, pp.94–106. (2011).
[39] Arfoa, A. A.: Long-Term Load Forecasting of Southern Governorates of Jordan Distribution Electric System. Energy and Power Engineering, Vol.7, 242–253. (2015).
[40] Arif, M., Nadeem, T., Ali, H., Ali, S. W., Khalid, U., Baseer, M.: Short Term Load Forecasting Solution Methodologies: Literature Review 2013 Survey Paper. IOSR Journal of Electrical and Electronics Engineering, Vol: 9, No: 3, pp. 44–47. (2014).
[41] Al-zahra, K. A., Moosa, K., Jasim, B. H.: A comparative Study of Forecasting the Electrical Demand in Basra city using Box-Jenkins and Modern Intelligent Techniques. Iraq Journal Electrical and Electronic Engineering, Vol. 11, No. 1, pp. 97–110. (2015).
[42] Tasaodian, B., Anvarian, N., Azadeh, A., Saberi, M.: An Adaptive-Network-Based Fuzzy Inference System for Long-Term Electricity Consumption Forecasting (2008-2015): A Case Study of the Group of Eight (G8) Industrialized Nations: U. S. A, Canada, Germany, United Kingdom, Japan, France and Italy. The 11th Asia Pacific Industrial Engineering and Management Systems Conference, The 14th Asia Pacific Regional Meeting of International Foundation for Production Research. pp. 1–12. (2010).
[43] Azadeh, A., Saberi, M., Nadimi, V., Iman, M., Behrooznia, A.: An Integrated Intelligent Neuro-Fuzzy Algorithm for Long-Term Electricity Consumption: Cases of Selected EU Countries. Acta Polytechnica Hungarica, Vol.7, No.4, pp.71–90. (2010).
[44] Bazmi, A. A., Davoody, M., Zahedi, G.: Electricity Demand Estimation Using an Adaptive Neuro-Fuzzy Network: A Case Study from the State of Johor, Malaysia: 1st Congress on Applied Chemical Sciences International Conference on Energy and Environmental-ICEE (2012).
[45] Mamdani E. H, “Application of fuzzy algorithms for control of simple dynamic plant, Proceedings of the Institution of Electrical Engineers”, Vol.121, No.12, pp.1585–1588, (1974).
[46] King P. J, and Mamdani E. H, “The application of fuzzy control systems to industrial processes”. Automatica, Vol.13, No.3, pp.235-242, (1977).
[47] Kaur A, & Kaur A, Comparison of Mamdani-Type and Sugeno-Type Fuzzy Inference Systems for Air Conditioning System, International Journal of Soft Computing and Engineering (IJSCE), 2 2, (2012).
[48] United Nations Department of Economic and Social Affairs, Population Division Population Estimates and Projections Section, World Population Prospects: The 2012 Revision Excel Tables-Population Data (2016).
[49] GISS Surface Temperature Analysis, http://data.giss.nasa.gov/gistemp/abs_temp.html (2016).
[50] NASA Goddard Institute for Space Studies Laboratory, Earth Sciences Division, National Aeronautics and Space Administration, Goddard Space Flight Center (2016).
[51] IPCC, 2013: Annex II: Climate System Scenario Tables [Prather, M., G. Flato, P. Friedlingstein, C. Jones, J.-F. Lamarque, H. Liao and P. Rasch (eds.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013).
[52] The International Energy Agency, Statistics, World Indicators (2016).
[53] The International Energy Agency, Unit Converter (2015).
[54] Armstrong J S & Collopy F, Error measures for generalizing about forecasting methods: Empirical comparisons. International journal of forecasting, 8 1 (1992) 69-80.
[55] Hyndman R J, Another look at forecast-accuracy metrics for intermittent demand. Foresight: The International Journal of Applied Forecasting, 4 4 (2006) 43-46.
[56] Kolassa S & Martin R, Percentage Errors Can Ruin Your Day (and Rolling the Dice Shows How). Foresight: The International Journal of Applied Forecasting, 23 (2011).
[57] Makridakis S, Hogarth R M & Gaba A, Why forecasts fail. What to do instead. MIT Sloan Management Review, 51 2 (2010) 83.
[58] Institute for Research and Applications of Fuzzy Modeling, University Ostrava, Computational Intelligence in Forecasting (CIF) 2016.
[59] Open Source Initiative (OSI), http://opensource.org/ (accessed 02/02/2016), 2016
[60] Free Software Foundation (FSF), http://www.fsf.org/ (accessed 02/02/2016), 2016
Cite This Article
  • APA Style

    Burak Omer Saracoglu. (2017). G2EDPS's First Module & Its First Extension Modules. American Journal of Applied Scientific Research, 3(4), 33-48. https://doi.org/10.11648/j.ajasr.20170304.13

    Copy | Download

    ACS Style

    Burak Omer Saracoglu. G2EDPS's First Module & Its First Extension Modules. Am. J. Appl. Sci. Res. 2017, 3(4), 33-48. doi: 10.11648/j.ajasr.20170304.13

    Copy | Download

    AMA Style

    Burak Omer Saracoglu. G2EDPS's First Module & Its First Extension Modules. Am J Appl Sci Res. 2017;3(4):33-48. doi: 10.11648/j.ajasr.20170304.13

    Copy | Download

  • @article{10.11648/j.ajasr.20170304.13,
      author = {Burak Omer Saracoglu},
      title = {G2EDPS's First Module & Its First Extension Modules},
      journal = {American Journal of Applied Scientific Research},
      volume = {3},
      number = {4},
      pages = {33-48},
      doi = {10.11648/j.ajasr.20170304.13},
      url = {https://doi.org/10.11648/j.ajasr.20170304.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajasr.20170304.13},
      abstract = {100% renewable worldwide power grid (Global Grid) system needs a Global Grid Electricity Demand Prediction System (G2EDPS) with very short, short, medium and long term forecasting consoles. This paper presents the 1st core module and its 10 extension modules in the long term prediction console. A type 1 Mamdani like Fuzzy Inference System (FIS) with 7 triangle membership functions and 49 rules is designed for 2 input and 1 output variables for a 100 year forecasting period. The maximum absolute percentage errors (MAP), the mean absolute percentage errors (MAPE), and the Symmetric MAPE (SMAPE) of the best core module and its extension modules are respectively 0, 24; 0, 08; 0, 05 and 0, 22; 0, 07; 0, 05.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - G2EDPS's First Module & Its First Extension Modules
    AU  - Burak Omer Saracoglu
    Y1  - 2017/11/28
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajasr.20170304.13
    DO  - 10.11648/j.ajasr.20170304.13
    T2  - American Journal of Applied Scientific Research
    JF  - American Journal of Applied Scientific Research
    JO  - American Journal of Applied Scientific Research
    SP  - 33
    EP  - 48
    PB  - Science Publishing Group
    SN  - 2471-9730
    UR  - https://doi.org/10.11648/j.ajasr.20170304.13
    AB  - 100% renewable worldwide power grid (Global Grid) system needs a Global Grid Electricity Demand Prediction System (G2EDPS) with very short, short, medium and long term forecasting consoles. This paper presents the 1st core module and its 10 extension modules in the long term prediction console. A type 1 Mamdani like Fuzzy Inference System (FIS) with 7 triangle membership functions and 49 rules is designed for 2 input and 1 output variables for a 100 year forecasting period. The maximum absolute percentage errors (MAP), the mean absolute percentage errors (MAPE), and the Symmetric MAPE (SMAPE) of the best core module and its extension modules are respectively 0, 24; 0, 08; 0, 05 and 0, 22; 0, 07; 0, 05.
    VL  - 3
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Independent Scholar, Istanbul, Turkey

  • Sections