| Peer-Reviewed

Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach

Received: 23 October 2016    Accepted: 26 December 2016    Published: 20 January 2017
Views:       Downloads:
Abstract

Our aim is to find the kind of adsorption (physisorption or chemisorption) existent, where the interaction of one metal atom (Ni, Pd, Pt) with one hydrogen molecule is achieved for modeling potential energy surface using DFT approach. This molecular modeling is developed when attacking a metal atom with a hydrogen molecule. Attack starts at 10 Å considered as infinite distance for determining the energies step by step of 1 Å approaches of hydrogen to metal. The new metal–hydrogen molecule also called complex or intermediary is located at the minimum between the attractive and repulsive part of the potential energy curve of interaction. The adsorption energy and equilibrium distance corresponds to insert metal atoms in gas molecules. This study analyzes the interaction metal-hydrogen and compares with other researches. The metal-hydrogen interaction is at least useful in high-tech electronic materials, fuel cells, hydrogen batteries, and catalysis.

Published in American Journal of Quantum Chemistry and Molecular Spectroscopy (Volume 1, Issue 1)
DOI 10.11648/j.ajqcms.20170101.12
Page(s) 7-20
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Density Functional Theory, Potential Energy Curve, Adsorption, Physisorption Chemisorption

References
[1] H. Nakatsuji and M. Hada, Croat. Chim. Acta 57 (1984) 1371.
[2] K. Balasubramanian, Chem. Phys. Lett. 135 (1987) 288.
[3] M. R. A. Blomberg, P. E. M. Siegbahn and B. O. Roos, Mol. Phys. 47 (1982) 127.
[4] M. R. A. Blomberg and P. E. M. Siegbahn, J. Chem. Phys. 78, (1983) 5682.
[5] M. R. A. Blomberg, U. Brandemark, L. Pettersson and P. E. M. Siegbahn, Int. J. of Quantum Chem., 23, (1983) 855-863
[6] S. Li, R. J. Van Zee, W. Weltner Jr., M. G. Cory and M. C. Zerner J. Chem. Phys. 106, (1997) 2055.
[7] M. E. Geusic, M. D. Morse, and R. E. Smalley, J. Chem. Phys. 82 (1985) 590.
[8] J. J. Low and W. A. Goddard III, J. Am. Chem. Soc. 106 (1984) 8321.
[9] X. Liu et al., J Phys Chem B Condens Matter Mater Surf Interfaces Biophys. 110 (2006) 2013.
[10] ASTM 2006: D3908-03 Standard Test Method for Hydrogen Chemisorption on Supported Platinum on Alumina Catalysts and Catalyst Carriers by Volumetric Vacuum Method.
[11] J. H. Pacheco I. P. Zaragoza, L. A. García, and A. Bravo Rev. Mex. Fís. 52 (2006) 172.
[12] P. Jena, S. N. Khanna, and B. K. Rao “Clusters and Cluster Reactions” in Density Functional Theory of Molecules, Clusters, and Solids. Edited by D. E. Ellis. Kluwer Academic Publishers. Dordrecht, Netherlands (1995).
[13] E. Poulain, J. García-Prieto, M. E. Ruiz, and O. Novaro, Int. J. Quantum Chem. 29 (1986) 1181.
[14] J. H. Pacheco and A. Bravo, O. Novaro. Revista Mexicana de Fisica 52 (2006) 395.
[15] C. Jarque and O. Novaro, M. E. Ruiz, and J. Garcia-Prieto, J. Am. Chem, Soc.1986, 108, 3507.
[16] G. A. Ozín and J. García-Prieto, J. Am. Chem. Soc. 1986, 108, 3099.
[17] H. Nakatsuji and M. Hada in Applied Quantum Chemistry edited by V. H. Smith, H. F. Schaefer, and K. Morokum. (1986). D. Reidel Publishing Company, Dordrecht, Holland. pp. 102-104.
[18] B. Roos, P. Taylor, and P. Siegbahn, Chern. Phys. 48, 157 (1980).
[19] P. Siegbahn, A. Heiberg, B. Roos, and B. Levy, Phys. Scripta, 21, 323 (1980).
[20] A. B. Kunz, M. P. Guse, and R. J. Blint, Chem. Phys. Lett. 37(3), 512 (1976).
[21] E. Poulain, F. Colmenares, S. Castillo and O. Novaro. Journal of Molecular Structure (Theochem). 210 (1990) 337-351.
[22] M. E. Alikhani and C. Minot. J. Phys. Chem. A 2003, 107, 5352-5355.
[23] K. Balasubramanian, J. Chem. Phys., 87 (1987) 2800.
[24] H. Nakatsuji, Y. Matsuzaki and T. Yonezawa, J. Chem. Phys., 88 (1988) 5759.
[25] R. M. Emrick, Journal of Physiscs F: Met Phys. 12 (1982) 1327.
[26] F. Ruette, G. Blyholder, and Head, J. Chem. Phys. 80, 2042 (1984).
[27] M. P. Guse, R. J. Blint, A. B. Kunz, Int. J. Quantum Chem. 11 (1977) 725 M.
[28] E. K. Parks, K. Liu, S. C. Richtsmeier, I. G. Pobo, and S. J. Riley, J. Chem. Phys. 82, (1985) 5470-5474.
[29] L. Andrews, Chem. Soc. Rev. 33 (2004) 123.
[30] L. Andrews, X. Wang, M. E. Alikhani, and L. Manceron, J. Phys. Chem. A 105 (2001) 3052.
[31] Ira N. Levine. (2001). Quantum Chemistry. Prentice Hall, NJ 2000.
[32] B. Delley, J. Chem. Phys. 1990, 92, 508; J. Chem. Phys. 1991, 94, 7245; J. Chem. Phys. 2000, 7756; J. Phys. Chem. 1996, 100, 6107.
[33] R. G. Parr, W. Yang. (1989). Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford.
[34] R. M. Dreizler, E. K. U. Gross. (1990). Density Functional Theory-an Approach to the Quantum Many- Body Problem. Springer. Berlin.
[35] John P. Lowe, Kirk A. Peterson. (2006). Quantum Chemistry. Elsevier Academic Press. Tercera Edicion.
[36] J. H. Pacheco-Sánchez, M. A. Pacheco-Blas, EMN Meeting on Computation and Theory 2015, Abstract 11-12.
[37] E. Poulain, S. Castillo. XI Simposio Iberoamericano de Catálisis. Guanajuato, México. Acta 182 (1988) 1297-1307.
[38] E. Poulain, S. Castillo, A. Cruz, and V. Bertin, Rev. Mex. Fís. 41 (1995) 50.
[39] T. Iwasita, J. Braz. Chem. Soc., 13 (2002) 401.
[40] K. Míšek, Czechoslovak Journal of Physics 29 (1979) 1243.
[41] J. J. Jackson, Lattice Defects in Quenched Metals, Academic, New York, (1965), p 467, 479.
[42] Perdew, J. P., Wang. Y. Phys. Rev. B., 45, (1992) 13244.
[43] Perdew, J. P., Wang. Y. Phys. Rev. B., 33, (1986) 8800.
[44] NIST Data Gateway. Available on internet.
[45] Atkins, P., Paula, J. 2010. Physical Chemistry. W. H. Freeman and Company, Novena Edición. New York.
[46] C. W. Oatley, Proceedings of the Physical Society 51 (1939) 318.
[47] R. J. Galagali, Brit. J. Appl. Phys. 15 (1964) 208.
Cite This Article
  • APA Style

    Juan Manuel Larrea Munguía, Juan Horacio Pacheco Sánchez, Federico del Razo López. (2017). Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach. American Journal of Quantum Chemistry and Molecular Spectroscopy, 1(1), 7-20. https://doi.org/10.11648/j.ajqcms.20170101.12

    Copy | Download

    ACS Style

    Juan Manuel Larrea Munguía; Juan Horacio Pacheco Sánchez; Federico del Razo López. Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach. Am. J. Quantum Chem. Mol. Spectrosc. 2017, 1(1), 7-20. doi: 10.11648/j.ajqcms.20170101.12

    Copy | Download

    AMA Style

    Juan Manuel Larrea Munguía, Juan Horacio Pacheco Sánchez, Federico del Razo López. Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach. Am J Quantum Chem Mol Spectrosc. 2017;1(1):7-20. doi: 10.11648/j.ajqcms.20170101.12

    Copy | Download

  • @article{10.11648/j.ajqcms.20170101.12,
      author = {Juan Manuel Larrea Munguía and Juan Horacio Pacheco Sánchez and Federico del Razo López},
      title = {Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach},
      journal = {American Journal of Quantum Chemistry and Molecular Spectroscopy},
      volume = {1},
      number = {1},
      pages = {7-20},
      doi = {10.11648/j.ajqcms.20170101.12},
      url = {https://doi.org/10.11648/j.ajqcms.20170101.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajqcms.20170101.12},
      abstract = {Our aim is to find the kind of adsorption (physisorption or chemisorption) existent, where the interaction of one metal atom (Ni, Pd, Pt) with one hydrogen molecule is achieved for modeling potential energy surface using DFT approach. This molecular modeling is developed when attacking a metal atom with a hydrogen molecule. Attack starts at 10 Å considered as infinite distance for determining the energies step by step of 1 Å approaches of hydrogen to metal. The new metal–hydrogen molecule also called complex or intermediary is located at the minimum between the attractive and repulsive part of the potential energy curve of interaction. The adsorption energy and equilibrium distance corresponds to insert metal atoms in gas molecules. This study analyzes the interaction metal-hydrogen and compares with other researches. The metal-hydrogen interaction is at least useful in high-tech electronic materials, fuel cells, hydrogen batteries, and catalysis.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Adsorption on (Ni-H2, Pd-H2, Pt-H2) Metal-Hydrogen Interaction: DFT Approach
    AU  - Juan Manuel Larrea Munguía
    AU  - Juan Horacio Pacheco Sánchez
    AU  - Federico del Razo López
    Y1  - 2017/01/20
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajqcms.20170101.12
    DO  - 10.11648/j.ajqcms.20170101.12
    T2  - American Journal of Quantum Chemistry and Molecular Spectroscopy
    JF  - American Journal of Quantum Chemistry and Molecular Spectroscopy
    JO  - American Journal of Quantum Chemistry and Molecular Spectroscopy
    SP  - 7
    EP  - 20
    PB  - Science Publishing Group
    SN  - 2994-7308
    UR  - https://doi.org/10.11648/j.ajqcms.20170101.12
    AB  - Our aim is to find the kind of adsorption (physisorption or chemisorption) existent, where the interaction of one metal atom (Ni, Pd, Pt) with one hydrogen molecule is achieved for modeling potential energy surface using DFT approach. This molecular modeling is developed when attacking a metal atom with a hydrogen molecule. Attack starts at 10 Å considered as infinite distance for determining the energies step by step of 1 Å approaches of hydrogen to metal. The new metal–hydrogen molecule also called complex or intermediary is located at the minimum between the attractive and repulsive part of the potential energy curve of interaction. The adsorption energy and equilibrium distance corresponds to insert metal atoms in gas molecules. This study analyzes the interaction metal-hydrogen and compares with other researches. The metal-hydrogen interaction is at least useful in high-tech electronic materials, fuel cells, hydrogen batteries, and catalysis.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Division of Postgraduate Studies and Research, Technological Institute of Toluca, Metepec, México

  • Division of Postgraduate Studies and Research, Technological Institute of Toluca, Metepec, México

  • Division of Postgraduate Studies and Research, Technological Institute of Toluca, Metepec, México

  • Sections