American Journal of Environmental Science and Engineering

| Peer-Reviewed |

Prediction of Void Ratio Pressure on Nitrogen Transport in Homogenous Silty Formation Patani, Delta State of Nigeria

Received: 30 September 2016    Accepted: 01 March 2017    Published: 29 March 2017
Views:       Downloads:

Share This Article

Abstract

These papers study the deposition of nitrogen transport under the influences of void ratio in the study area, the transport process were examined thoroughly thorough development of mathematical modelling compared with physiochemical investigation for model validation. This was carried out to find the rate of nitrogen concentration in the study environment, the alarming rate of microbial growth from the investigation is a seriously concern causing hundred of ill health in the study location. The application of this modelling techniques generated detailed sources of nitrogen deposition at different depth and time. The developed model from the graphical representation shows that nitrogen deposition are influenced by the variation of void ratio, some location experienced exponential and vacillation determined from the derived model simulation values, high growth rate sources from micronutrient has be examined thus stratum where high concentration are deposited has been observed. The study is imperative because it has express sources of nitrogen thoroughly. Finally, it has predicted the rate of nitrogen concentration under the influences of predominated void ratio in the study area.

DOI 10.11648/j.ajese.20170101.13
Published in American Journal of Environmental Science and Engineering (Volume 1, Issue 1, February 2017)
Page(s) 14-21
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Prediction, Void Ratio, Pressure, Nitrogen Transport, Homogeneous Silty, Formation

References
[1] Kozák J., Vacek O. (1996): The mathematical model (BPS) for prediction of pesticide behaviour in soil. RostlinnáVýroba, 42: 69–76.
[2] Poletika N. N., Jury W. A., Yates M. V. (1995): Transport of bromide, simazine, and MS-2 coliphage in a lysim¬eter containing undisturbed, unsaturated soil. Water Resources Research, 31: 801–810.
[3] Streck T., Poletika N. N., Jury W. A., Farmer W. J. (1995): Description of simazine transport with rate-limited, two-stage, linear and nonlinear sorption. Water Re¬sources Research, 31: 811–822.
[4] Kočárek M., Kodešová R., Kozák J., Drábek O., Vacek O. (2005): Chlortoluron behaviour in five varying soil types. Plant, Soil and Environment, 51: 304–309.
[5] Flury M., Leuenberger J., Studer B., Flühler H. (1995): Transport of anions and herbicides in a loamy and sandy field soil. Water Resources Research, 31: 823–835.
[6] Kamra S. K., Lennartz B., van Genuchten M. Th., Wid¬moser P. (2001): Evaluating non-equilibrium solute transport in small soil columns. Journal of Contami¬nant Hydrology, 48: 189–212.
[7] FOCUS (2000): FOCUS groundwater scenarios in the EU plant protection product review process. Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference Sanco/321/2000, DG SANCO, EU Commission, Brussels.
[8] Jorgensen P. R., Hoffmann M., Kistrup J. P., Bryde C. (2002): Preferential flow and pesticide transport in a clay-rich till: Field, laboratory, and modeling analy¬sis. Water Resources Research, 38 (11).
[9] Therrien R., Sudicky E. A. (1996): Three-dimensional analysis of variably-saturated flow and solute trans¬port in discretely-fractured porous media. Journal of Contaminant Hydrology, 23: 1–44.
[10] Gerke H. H., van Genuchten M. Th. (1996): Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media. Advances in Water Resources, 19: 343–357.
[11] Gerke H. H., van Genuchten M. Th. (1993): A dual-poros¬ity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research, 29: 305–319.
[12] Jarvis N. J. (1994): The MACRO model. Technical de¬scription and sample simulation. Reports and dissertations 19. Department of Soil Science, Swedish University of Agricultural Science, Uppsala, Sweden.
[13] Besien T. J., Jarvis N. J., Williams R. J. (1997): Simulation of water movement and isoproturon behaviour in a heavy clay soil using the MACRO model. Hydrol¬ogy and Earth System Sciences, 4: 835–844.
[14] Šimůnek J., Jarvis N. J., van Genuchten M. Th., Gär-denäs A. (2003): Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology, 272: 14–35.
[15] Šimůnek J., Šejna M., van Genuchten M. Th. (1998): The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and mul¬tiple solutes in variably-saturated media. Version 2.0. IGWMC-TPS-53. International Ground Water ModelingCenter, Colorado. School of Mines, Golden, CO.
[16] Kodešová R., Kozák J., Vacek O. (2004): Field and nu¬merical study of chlorotoluron transport in the soil profile. Plant, Soil and Environment, 50: 333–338.
[17] Kodešová1, R. Kozák1, J. Šimůnek, J. VacekO. (2005): Single and dual-permeability models of chlorotoluron transport in the soil profile Supported by the Ministry of Agriculture of the Czech Republic, Project No. QF3250. Plant soil Environ. 51, (7): 310–315.
Author Information
  • Department of Civil and Environmental Engineering, Subaka Nigeria Limited Port Harcourt, Port Harcourt, Nigeria

Cite This Article
  • APA Style

    Eluozo S. N. (2017). Prediction of Void Ratio Pressure on Nitrogen Transport in Homogenous Silty Formation Patani, Delta State of Nigeria. American Journal of Environmental Science and Engineering, 1(1), 14-21. https://doi.org/10.11648/j.ajese.20170101.13

    Copy | Download

    ACS Style

    Eluozo S. N. Prediction of Void Ratio Pressure on Nitrogen Transport in Homogenous Silty Formation Patani, Delta State of Nigeria. Am. J. Environ. Sci. Eng. 2017, 1(1), 14-21. doi: 10.11648/j.ajese.20170101.13

    Copy | Download

    AMA Style

    Eluozo S. N. Prediction of Void Ratio Pressure on Nitrogen Transport in Homogenous Silty Formation Patani, Delta State of Nigeria. Am J Environ Sci Eng. 2017;1(1):14-21. doi: 10.11648/j.ajese.20170101.13

    Copy | Download

  • @article{10.11648/j.ajese.20170101.13,
      author = {Eluozo S. N.},
      title = {Prediction of Void Ratio Pressure on Nitrogen Transport in Homogenous Silty Formation Patani, Delta State of Nigeria},
      journal = {American Journal of Environmental Science and Engineering},
      volume = {1},
      number = {1},
      pages = {14-21},
      doi = {10.11648/j.ajese.20170101.13},
      url = {https://doi.org/10.11648/j.ajese.20170101.13},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajese.20170101.13},
      abstract = {These papers study the deposition of nitrogen transport under the influences of void ratio in the study area, the transport process were examined thoroughly thorough development of mathematical modelling compared with physiochemical investigation for model validation. This was carried out to find the rate of nitrogen concentration in the study environment, the alarming rate of microbial growth from the investigation is a seriously concern causing hundred of ill health in the study location. The application of this modelling techniques generated detailed sources of nitrogen deposition at different depth and time. The developed model from the graphical representation shows that nitrogen deposition are influenced by the variation of void ratio, some location experienced exponential and vacillation determined from the derived model simulation values, high growth rate sources from micronutrient has be examined thus stratum where high concentration are deposited has been observed. The study is imperative because it has express sources of nitrogen thoroughly. Finally, it has predicted the rate of nitrogen concentration under the influences of predominated void ratio in the study area.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Prediction of Void Ratio Pressure on Nitrogen Transport in Homogenous Silty Formation Patani, Delta State of Nigeria
    AU  - Eluozo S. N.
    Y1  - 2017/03/29
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajese.20170101.13
    DO  - 10.11648/j.ajese.20170101.13
    T2  - American Journal of Environmental Science and Engineering
    JF  - American Journal of Environmental Science and Engineering
    JO  - American Journal of Environmental Science and Engineering
    SP  - 14
    EP  - 21
    PB  - Science Publishing Group
    SN  - 2578-7993
    UR  - https://doi.org/10.11648/j.ajese.20170101.13
    AB  - These papers study the deposition of nitrogen transport under the influences of void ratio in the study area, the transport process were examined thoroughly thorough development of mathematical modelling compared with physiochemical investigation for model validation. This was carried out to find the rate of nitrogen concentration in the study environment, the alarming rate of microbial growth from the investigation is a seriously concern causing hundred of ill health in the study location. The application of this modelling techniques generated detailed sources of nitrogen deposition at different depth and time. The developed model from the graphical representation shows that nitrogen deposition are influenced by the variation of void ratio, some location experienced exponential and vacillation determined from the derived model simulation values, high growth rate sources from micronutrient has be examined thus stratum where high concentration are deposited has been observed. The study is imperative because it has express sources of nitrogen thoroughly. Finally, it has predicted the rate of nitrogen concentration under the influences of predominated void ratio in the study area.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

  • Sections