Numerical Simulation of CuInSe2 (CIS) Thin Film Solar Cell with (ZnO, ZnO:F) Buffer Layers
Advances in Nanomaterials
Volume 1, Issue 1, September 2017, Pages: 22-27
Received: Apr. 8, 2017; Accepted: Aug. 14, 2017; Published: Sep. 5, 2017
Views 250      Downloads 13
Authors
T. Belal, Department of Physics, Laboratory-N Body & Structure of Matter, Algiers, Algeria
R. Tala-Ighil Zair, University M'hamed Bougara Boumerdes, URMPE Research Unit, Institute of Electrical & Electronic Engineering, Boumerdes, Algeria
F. Ghezal, University M'hamed Bougara Boumerdes, URMPE Research Unit, Institute of Electrical & Electronic Engineering, Boumerdes, Algeria
Article Tools
Follow on us
Abstract
This study focuses on the solar cells based on CIS simulation with buffer layer zinc oxide (ZnO) and fluorine-doped zinc oxide (ZnO:F). ZnO is a multifunctional material with several applications in electronics and photovoltaics, with multiple possibilities of synthesis involve inexpensive methods. ZnO (ZnO:F) is a prominent candidate to be an alternative buffer layer to so-called toxic cadmium sulphide (CdS) in CIS based solar cells. A promising result has been achieved with an efficiency of 22% with Voc = 0.565 V, Jsc = 45 mA/cm2 and fill factor = 82% by using ZnO (ZnO:F) as a buffer layer. It is also found that the high efficiency of CIS absorber layer thickness is between 1500nm and 2000nm. Our results are in good agreement with those reported in the literature from experiments.
Keywords
CIS, ZnO, ZnO:F, SCAPS, Buffer Layer
To cite this article
T. Belal, R. Tala-Ighil Zair, F. Ghezal, Numerical Simulation of CuInSe2 (CIS) Thin Film Solar Cell with (ZnO, ZnO:F) Buffer Layers, Advances in Nanomaterials. Vol. 1, No. 1, 2017, pp. 22-27. doi: 10.11648/j.an.20170101.15
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
TRPV Working Group. (2014). International Technology Roadmap for Photovoltaic (ITRPV) 2013 Results.
[2]
Osborne, M. (2013). First Solar hits cost reduction milestone.
[3]
DOE Technical Report. (2012).
[4]
Burgelman, M., Decock, K., Khelifi, S., & Abass, A. (2013). Advanced electrical simulation of thin film solar cells. Thin Solid Films, 535, 296-301. doi:10.1016/j.tsf.2012.10.032
[5]
Kanevce, A. (2007). Anticipated performance of Cu (In, Ga) Se2 solar cells in the thin-film limit (Doctoral dissertation, Colorado State University).
[6]
Malm, U., Malmström, J., Platzer-Björkman, C., & Stolt, L. (2005). Determination of dominant recombination paths in Cu (In, Ga)Se2thin-film solar cells with ALD–ZnO buffer layers. Thin Solid Films, 480-481, 208-212. doi:10.1016/j.tsf.2004.11.008
[7]
Gloeckler, M., Sites, J. R., & Metzger, W. K. (2005). Grain-boundary recombination in Cu (In, Ga)Se2 solar cells. Journal of Applied Physics, 98(11), 113704. doi:10.1063/1.2133906
[8]
Gloecker, M. (2005). Device Physics of Cu (In, Ga)Se2 Thin-film Solar Cells (Doctoral dissertation).
[9]
Tala Ighil, R., Iratni, A., Arabi, N., Bensouici, F., & Slimani, A. (2012, February). Effect of CdS Replacement by Cd-free buffer layer onto (CIS) solarcell. Paper presented at International Work Shop on Advanced Materials IWAM 2012, Ras Al Khaimah, United Arab Emirates.
[10]
Montes-Monsalve, J., Morales-Acevedo, A., Bernal-Correa, R., & Pulzara-Mora, A. (2016). Characterization of CuInSe2 thin films obtained by rf magnetron co-sputtering from CuSe and in targets. chalcogenide letters, 13(8), 381-388. Retrieved from http://www.chalcogen.ro/381_MontesMJI.pdf
[11]
Guillen-Santiago, A., De la L. Olvera, M., Maldonado, A., Asomoza, R., & Acosta, D. R. (2004). Electrical, structural and morphological properties of chemically sprayed F-doped ZnO films: effect of the ageing-time of the starting solution, solvent and substrate temperature. physica status solidi (a), 201(5), 952-959. doi:10.1002/pssa.200306727
[12]
Lindahl, J., Keller, J., Donzel-Gargand, O., Szaniawski, P., Edoff, M., & Törndahl, T. (2016). Deposition temperature induced conduction band changes in zinc tin oxide buffer layers for Cu (In, Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 144, 684-690. doi:10.1016/j.solmat.2015.09.048
[13]
Klinkert, T. (2015). Comprehension and optimisation of the co-evaporation deposition of Cu (In, Ga)Se2 absorber layers for very high effciency thin film solar cells. Chemical Physics [physics.chem-ph] (Doctoral dissertation, Universite Pierre et Marie Curie - Paris VI).
[14]
Sun, J., Nalla, V., Nguyen, M., Ren, Y., Chiam, S. Y., Wang, Y … Wong, L. H. (2015). Effect of Zn (O, S) buffer layer thickness on charge carrier relaxation dynamics of CuInSe2 solar cell. Solar Energy, 115, 396-404. doi:10.1016/j.solener.2015.03.008
[15]
Hegedus, S. S., & Shafarman, W. N. (2004). Thin-film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications, 12(23), 155-176. doi:10.1002/pip.518
[16]
Benosman, M., Bouchaour, M., Dujardin, F., Charles, J. P., & Benyoucef, B. (2003). Le Rôle Du Mécanisme de Recombinaison sur Les Performances Photovoltaïques des Cellules Solaires de Type Cu (In, Ga)(S, Se2). Revue: Energie Renouvelable: ICPWE, 103-106.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931