Effects of the Extracts of Euphorbia pulcherima and Atriplex nummularia on the Infectivity of Schistosoma haematobium to Bulinus truncatus Snails
Advances in Biomechanics
Volume 1, Issue 2, October 2017, Pages: 34-41
Received: Apr. 23, 2017; Accepted: May 8, 2017; Published: Jul. 6, 2017
Views 1299      Downloads 74
Authors
Fayez A. Bakry, Theodor Bilharz Research Institute, Giza, Egypt
Manal El-Garhy, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
Mahmoud Abd El-Atti, Department of Zoology, Zagazig University, Zagazig, Egypt
Marwa Th. Atwa, Zoology Departement, Faculty of Science, Fayoum University, Al Fayoum, Egypt
Article Tools
Follow on us
Abstract
Effects of extracts of Euphorbia pulcherima and Atriplex nummularia on infection rate and cercarial production of The Bulinus truncatus infected with Schistosoma haematobium, as well as on the free living stages of the parasite (miracidia and cercariae) besides biochemical parameters of the snail were studied. The results showed that the LC25 of the extracts of E. pulcherima and A. nummularia caused a considerable reduction in the infectivity
Keywords
Bulinus truncatus, Schistosoma haematobium, Euphorbia pulcherima, Atriplex nummularia, Glucose, Glycogen and Protein
To cite this article
Fayez A. Bakry, Manal El-Garhy, Mahmoud Abd El-Atti, Marwa Th. Atwa, Effects of the Extracts of Euphorbia pulcherima and Atriplex nummularia on the Infectivity of Schistosoma haematobium to Bulinus truncatus Snails, Advances in Biomechanics. Vol. 1, No. 2, 2017, pp. 34-41. doi: 10.11648/j.abm.20170102.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Larson, M. K.; Bender, R. C. and Bayne, C. J. (2014): Resistance of Biomphalaria glabrata13-16-R1 snails to Schistosoma mansoni PR1 is a function of haemocyte abundance and constitutive levels of specific transcripts in haemocytes. Int. J. Parasitol., 44 (6): 343-353.
[2]
World Health Organization (2010) World health report on Schistosomiasis. Wikipedia, the Free Encyclopedia MHT.
[3]
Youssef, A. A. (2010) Studies on the impact of some pesticides and Egyptian plants on some biological and physiological parameters of Biomphalaria alexandrina snails and their susceptibility to infection with Schistosoma mansoni miracidia. M. Sc. Thesis, Faculty of science, Al-Azhar University, Egypt.
[4]
Bakry, F. A, F. A; Ismail, S. M and Abd El- Monem. S (2004): Effect of two plant extracts on some Biological and enzymatic activities of Bulinus truncatus with Schistosoma haematobium. J. Aqual. Biol. Fish. Vol. 8, No, 4: 313-446.
[5]
Bakry F. A, Ismail S. M., Abd El-Atti M. S. (2015). Glyphosate herbicide induces genotoxic effect and physiological disturbances in Bulinus truncatus snails. Pesticide Biochemistry and Physiology 123: 24–30.
[6]
Mousa, A. H., Yousif, F. and El-Ghayeb, F. M. (1968-1969): Studies on low concentrations of molluscicides. I- Effect of low concentrations of molluscicides on the survival and egg production of the snail intermediate hosts of schistosomiasis in UAR. Bull. Zool. Soc. Egypt, 22: 105-116.
[7]
Perrett, S. and Whitfield, PJ. (1996): In vitro cercaricidal activity of schistosomiasis. J. Parasitol., 52: 617.
[8]
El-Bolkiny, YE.; Salem, ML.; Attia, WY. and Al-sharkawi, I. M. (1997). Toxicological study of Ammi majus as a plant molluscicide on the hemolytic. J. Egypt. Grt. Soc. Zool., 23 (A): 379-401.
[9]
Mohamed, A. M.; El-Fikii, S. A.; El-Sawy, M. F. and El-Wakil, H. (1981): Effect of prolonged exposure of Biomophalaria alexandrina to low concentration of some molluscicides. 1- Effect on longevity, growth rate, fecundity and susceptibility to Schistosoma infection. J. Egy. Soc. Parasitol., 11 (2): 295-309.
[10]
Rawi, S. M.; El-Gindy, H.; Haggag, A. M.; Abou El Hassan, A. & Abdel Kader, A. (1995): Few possible molluscicides from calendula Micrantha officinalis and Ammimajus plants. I. Physiological effect on B. alexandrina and B. truncatus. J. Egypt. Ger. Soc. Zool. 16: 69-75.
[11]
Bakry, F. A; Ragab, F. M. A and Sakran, A. M. A. (2002a): Effect of some plant extracts with molluscicidal properties on some biological and physiological parameters of Biomphalaria alexandrina snails. J. Ger. Soc. Zool. 38: 101- 111.
[12]
Sakran, AM. A. (2004): Biological and physiological studies on Biomphalaria alexandrina snails exposed to two herbicides. Egypt. J. Zool. 42: 205-215.
[13]
El-Sayed MM, Abdel-Hameed ES, El-Nahas HA, El-Wakil EA. 2006. Isolation and identification of some steroidal glycosides of Furcraea selloa. Pharmazie. 61 (5): 478-482.
[14]
Sakran A. M. A and Bakry F. A (2005): Biological and physiological studies on Biomphalaria alexandrina snails exposed to different plant molluscicides. J. Egypt. Ger. Soc. Zool, Vol (48A). 237-256.
[15]
Bakry F. A and Hamdi S. A. H.(2007): Molluscicidal activity of latex Aqueous solution of Euphorbia acetonitril and Euphorbia granulate against the intermediate hosts of Schistosomiasis and Fascioliasis. J. Union. Arab. Biol. 27: 101-126.
[16]
Gawish, F. A. and El-Bardicy, S. (2002) Effect of the plants Solanumnigrum and Ambrosia maritima on susceptibility of Biomphalariaglabrata snails and albino mice to Peurto Rican strain of Schistosoma mansoni. Abs. Int. Conf. TBRI, Cairo, Egypt, 26.
[17]
Rawi, S. M.; El-Gindy, H & Abdel Kader, A. (1996): New possible molluscicides from calendula Micrantha officinalis and Ammi majus. Molluscicidal, physiological and egg laying effects against Biomphalaria alexandrina and Bulinus truncates. J. Eco. Toxical. Environmental Safety, 35: 261.
[18]
Bakry, F. A. (2009) Impact of Some Plant Extracts on Histological Structure and Protein Patterns of Biomphalaria alexandrina Snails. Globul J. Molecul. Sci. 4(1): 34-41.
[19]
Bakry F. A., Eleiwa E. M., Taha S. A., and Ismil S. M. (2016a). Comparative toxicity of Paraquat herbicide and some plant extracts in Lymnaea natalensis snails Toxicology and Industrial Health. 32: 143-153
[20]
Bakry F. A., El-Hommossany K., Ismil S. M. (2016b). Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides Basudin and Selecron. Toxicology and Industrial Health, 32: 666–676.
[21]
WHO (1965): Molluscicide screening and evaluation. Bull. WHO. 33: 567-581.
[22]
Litchfield, J. T. and Wilconxon, F. (1949): A simplified method of evaluation dose-effect experiments. J. Phamacol. Exp. Therep., 96: 99-113.
[23]
Michelson, EH. (1966). Specificityof hemolymph antigens in taxonomic discrimination of medically important snails. J. Parasitol., 52: 466-472.
[24]
Lowry, OH.; Rose Brough, NJ.; Farr, AL. & Randall, RJ. (1951). Protein measurement with thefolin-phenol reagent. J. Biol. Chem., 2: 265-275.
[25]
Carroll, N. V.; Longley, R. W. & Roe, J. H. (1956) The determination of glycogen in the liver and muscles by use of anthrone reagent. J. Biochem. 220: 583-593.
[26]
Trinder, P. (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem, 6: 24-27.
[27]
Uyeda, K. and Racker, E. (1965) Regulatory mechanisms in carbohydrate metabolism. VII. Hexokinase and phosphofructokinase. J. Biol. Chem. 240: 4682-4688
[28]
McManus, D. P. and B. L. James (1975) Anaerobic glucose metabolism in the digestive gland of Littorinasaxatitis rudis (Maton) and the daughter sporocysts Microphallussimilis (Tag). Comp. Biochem. Physiol., 51B” 293-297
[29]
Cabaud, P. & Wroblewski, F. (1958) Colorimetric measurement of lactic dehydrogenase activity of body fluids. Am. J. Clin. Pathol. 3 0: 234.
[30]
Giles, A. and Vanstone, W. E. (1976) Changes in ouabain-sensitive adenosine triphosphatase activity in gills of cohosalmon (Oncorhynchus kisutch) during parrsmolt transformation. J. Fish. Res. Bd. Can; 33: 54-62.
[31]
Spiegel, R. M. (1981): Theory and problems of Statistics, Schaum’s outline series. McGraw-Hill, Singapore.
[32]
Shoeb, H. A.; El-Emam, and Osman, N. S. (1982) The molluscicidal activity of Eupherbiaceae- Euphorbia peplus Egypt. J. Bilh. 9: 41-55.
[33]
Mansour, S. A.; Ibrahim, A. M. and Abdel-Hamid, H. F. (2002): Botonical Biocides. 8- impact of some plant extracts on Biomphalaria alexandrina snails and on Schistosoma mansoni miracidia and cercariae. Egy. J. Schisto. Infect. Endem. Dis., 24: 81-99.
[34]
Barky, F. A.; Tantawy, A. A. and Ragab, F. M. A. (2001): Effect of sublethal concentrations of Agava franzosinii plant (Agavaceae) on the infectivity of Schistosoma mansoni to Biomphalaria alexandrina snails. J. Egypt. Ger. Soc. Zool., 33 (D): 129-141.
[35]
Abdel Kader, A.; Hamdi, SAH.; Rawi, SM. (2005). Biological and biochemical studies on Biomphalaria alexandrina snails, treated with low concentrations of certain molluscicides (synthetic and of plant origin). J. Egypt. Soc. Parasitol., 35 (3): 841-858.
[36]
El-Emam, M. A., Shoeb, H. A., Ebid, F. A. and Refai, L. A. (1986) Snail control by Calendula micrantha officinalis. J. Egypt. Soc. Parasitol., 16 (2): 563-571.
[37]
Tantawy, A. A.; Sharaf El-Din, A. T. and Bakry, F. A. (2000): Molluscicidal effect of Solanum dubium (Solanaceae) against Biomphalaria alexandrina snails under laboratory conditions. Proc. Int. Conf. Biol. Sci., 1 (2): 307-318.
[38]
Mohamed, A. M., Bakry, F. A. and Heiba, F. N. (2000) Molluscicidal effects of Abamectin on Biomphalaria alexandrina and its inflection with Schistosoma mansoni. J. 1st Inter. Cong. Biolg. Sci., 1 (2): 207-216.
[39]
Sharaf El-Din, A. T. and El-Sayed, K. A. (2001) Alteration in glucose, glycogen and lipid content in Biomophalaria alexandrina snails post-exposure to Schistosoma mansoni and Echinostoma liei miracidia. J. Egy. Ger. Soc. Zool., 36 (D): 103-113.
[40]
Mahmoud, M. B. (1993) Effect of certain pesticides on Biomphalariaalexandrina and the intramolluscan larval stages of Schistosoma mansoni. M. Sc. Thesis, Fac Sci Cairo Univ
[41]
Gawish, F. A. (1997) Evaluation of combination of certain molluscicides against Biomphalaria alexandrina and the free living stages of Schistosoma mansoni. Ph. D. Thesis, Girls College for Arts, Sci. & Education, Ain Shams Univ., Egypt.
[42]
El-Ansary, A., El-Baricy, S., Soliman, M. S., Zayed, N. (2000): Sublethal concentration of Ambrosia maritima (Damsissa) affecting compatibility of Biomphalaria alexandrina snails to infection with Schistosoma mansoni through distributing the glycolytic pathway. J. Egypt. Soc. Parasitol. Dec; 30 (3): 809-19.
[43]
Badawy, A. M. S. (1991): Control of snail vectors of bilharziasis by using some plants. MSc. Thesis, Monoufia Univ., Egypt.
[44]
Adewunmi, C. O. and Furu, P. (1989) Evaluation of Aridanin, a glycoside and Aridan an aqueous extract of Tetraptera fruit on Schistosoma mansoni and S. bovis. J. Ethnopharmacol., 27 (3): 277-283.
[45]
Ahmed, A. H. and Ramzy, R. M. (1997): Laboratory assessment of the molluscicidal and cercaricidal activities of the Egyptian weed, Solanum nigrum L. Ann. Trop. Med. Parasitol., 91 (8): 931-937.
[46]
Mostafa, B. B. and Tantawy, A. A. (2000) Bioactivity of Anagallis arvensis and Calendula micrantha plants treated with ammonium nitrate superphosphate and potassium sulphate fertelizers on Biomphalaria alexandrina. J. Egypt. Soc. Parasitol., 30 (3): 929-942.
[47]
EL-Ansary, A., Sammour, E. M.; Soliman, M. S. and Gawish, F. A. (2001): Invivo, attenuation of schistosome cercarial development and disturbance of egg laying capacity in Biomphalaria alexandrina using sublethal concentrations of plant molluscicides. J. Egy. Soc. Prasitol., 31 (3): 657-669.
[48]
Abdel Kader, A. and Tantawy, AA. (2000). Effect ofAgave filifera and Agaveattenuata on Biomphalariaalexandrina snails, the vector of Schistosomamansoni in Egypt. Egypt. J. Schist. Infect. Endem. Dis., 22: 173-185.
[49]
Bakry, FA; Sakran, AA and Ismail, NMM (2002b). Molluscicidal effect of fungicide, herbicide and plant extract on some biological and physiological parameters of Biomphalaria alexandrina. J. Egypt. Soc. Parasitol., 32 (3): 821-835.
[50]
Paul, J.; Bekker, A. Y. and Duran, W. N. (1990). Calcium entry prevents leakage of macromolecules induced by ischemia-reperfusion in skeletal muscle. Circ. Res., 66: 1636-1642.
[51]
Prasad. M. R; Popeseu, L. M; Moraru, I. I.; Liu, X.; Maity, S.; Engelman, R. M. and Das, D. K. (1991). Role of phospholipase A and C in myocardial ischemic repefusion injury. Am. J. Physiol., 29: 877-H 883.
[52]
Singh, D. K. and Agarwal, R. A. (1991). Action sites of cypermethrin asynthetic pyrethroid in the snail Lymnaea acuminate. Acta Hydrochim. Hydro. Biol., 19 (4): 425-430.
[53]
Aboul-Zahab, A. O. & El-Ansary, A. (1992): Biological aspects of controlling snail hosts of bilharziasis using wild and cultivated plant extracts. Ann. Agric. Sci. Moshtohor, 30 (3): 1531-1539.
[54]
Ismail, M; Farrag, F. and Hosny, A. (1996). Variation of Cholinesterase and adenosine triphosphatase activity in snails treated with different fertilizers. J. Union Arab Biol., 5A: 355-360.
[55]
Fahmy S. R., Abdel-Ghaffar F., Bakry F. A., Sayed D. A. (2014). Ecotoxicological Effect of Sublethal Exposure to Zinc Oxide Nanoparticles on Freshwater Snail Biomphalaria alexandrina. Arch Environ Contam Toxicol (2014) 67: 192–202.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186