Journal of Biomaterials

| Peer-Reviewed |

Studying the Optimum Conditions for the Synthesis the Derivatives of Salicylaldehyde with Halides Compounds

Received: 08 April 2017    Accepted: 22 May 2017    Published: 13 July 2017
Views:       Downloads:

Share This Article

Abstract

Three Dialdehydes were synthesized by the reaction of Salicylaldehyde and many Aliphatic and Aromatic Halides. The optimal condition (Catalysts, Temperature, Time of Reaction and Effect of Solvents) to get a high selective compounds and high yields have been studied. The reactions were followed by using Thin Layer Chromatography (TLC). The synthesized compounds were purified and characterized by means of High Performance Liquid Chromatography (HPLC) and spectroscopy methods: Infrared Spectra (IR), 1 H-NMR, 13C-NMR.

DOI 10.11648/j.jb.20170102.12
Published in Journal of Biomaterials (Volume 1, Issue 2, December 2017)
Page(s) 34-39
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Salicylaldehyde, Heterogeneous Catalysts, Dialdehyde, Aliphatic and Aromatic Halides

References
[1] Misbah. R, Imran. M, Arif. M, 2013, Synthesis, Characterization and in Vitro Antimicrobial Studies of Schiff-Bases Derived from Acetylacetone and Amino Acids and their Oxovanadium (IV) Complexes, Am J of Appl Chem, V. 4, P. 59-66.
[2] Arif. M, Qurashi. M, Shad. M, 2011, Metal-based antibacterial agents: synthesis, characterization, and in vitro biological evaluation of cefixime-derived Schiff bases and their complexes with Zn(II), Cu(II), Ni(II), and Co(II), J of Coord Chem, V. 64, P. 1914-1930.
[3] Min. W, Liu-Fang. W, Yi-Zhi. L, Qin-Xi. L, Zhi-Dong. X, 2001, Antitumour activity of transition metal complexes with the thiosemicarbazone derived from 3-acetylumbelliferone, Trans Metal Chem, V. 26, P. 307-310.
[4] Abdullah. M, Salman. A, 2010, Synthesis and Anti-Bacterial Activities of Some Novel Schiff Bases Derived from Aminophenazone. Molecules, V. 15, P. 6850-6858.
[5] Maji. M, Ghosh. S, Chattopadhyay. S, 1999, Studies on Ru(II) complexes of 4 (4- tolyl ) thiosemicarbazone of 2-acetylpyridine (LH). First synthesis and structural characterization of a Ru complex containing the imine (mpi). Crystal structure of [Ru (LH) (PPh3) 2Cl] Cl. CH2Cl2 and [Ru (LH) (PPh3) (mpi)] Cl2. CH2Cl2. 3H2O, J. Chem. Soc. Dalton Trans, P. 135-140.
[6] Sengupta. P, Dinda. R, Ghosh. S, Sheldrick. W, 2003, Synthesis and characterization of some biologically active ruthenium (II) complexes of thiosemicarbazones of pyridine 2-aldehyde and thiophene 2-aldehyde involving some ring substituted 4-phenylthiosemicarbazides and 4-Cyclohexylthiosemicarbazide. Crystal Structure of Cis-[Ru (PPh3) 2 (L6H)2] (ClO4)2 2H2O [L6H = 4- (Cyclohexyl) Thiosemicarbazone of Pyridine 2-Aldehyde]. Polyhedron, V. 22, P. 447-453.
[7] Christian. G, 1996, Analytical strategies for the measurement of lithium in biological samples, J Pharm Biomed Anal, V. 14, P. 899-908.
[8] Ibrahim. U, Ismet. B, Turgut. K, 2006, Synthesis, complexation and antifungal, antibacterial activity studies of a new macrocyclic schiff base. J of Heterocyclic Chem, V. 43, P. 1679-1684.
[9] Ariadni. Z, George. P, Antonios. H, 2016, Synthesis, structural, thermal characterization and interaction with calf-thymus DNA and albumins of cationic Ni(II) complexes with 2,2'-dipyridylamine and salicylaldehydes, Polyhedron, p. 1-33.
[10] Eila. P, Markku. L and Hannu. E, 2011, Substituted Salicylaldehydes as Potential Antimicrobial Drugs: Minimal Inhibitory and Microbicidal Concentrations, Z. Naturforsch, V. 66, P. 571–580.
[11] Mounika. K, Anupama. B, Pragathi. J and Gyanakumari. C, 2010, Synthesis¸ Characterization and Biological Activity of a Schiff Base Derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic acid and its Transition Metal Complexes, J. Sci. Res, V. 2, P. 513-524.
[12] Michael. S, Jerry. M, 2007, MARCH’S ADVANCED ORGANIC CHEMISTRY, John Wiley & Sons, Inc, p. 1-2357.
[13] Hongchuan. X, Liangning. Hu, Jianqiang. Yu, 2017, A green catalytic method for selective synthesis of iodophenols via aerobic oxyiodination under organic solvent-free conditions, Catalysis Communications, p. 1-18.
[14] Selmi. B, GontierE, Ergan. F and Thomas. D, 1997, Enzymatic synthesis of tricaprylin in a solvent-free system: lipase regiospecificity as controlled by glycerol adsorption on silica gel, Biotechnology Techniques, V. 11, pp. 543–547.
[15] Meenakshisundaram. S, Nikolaos. D, 2012, Designing bimetallic catalysts for a green and sustainable future, Chem. Soc. Rev, V. 41, P. 8099–8139.
[16] Olayinka. B and Ibitola. B, 2004, Rationalization of the conflicting effects of hydrogen bond donor solvent on nucleophilic aromatic substitution reactions in non-polar aprotic solvent: reactions of phenyl 2, 4, 6-trinitrophenyl ether with primary and secondary amines in benzene–methanol mixtures, Tetrahedron, V. 60, P. 4645–4654.
[17] Mikhail. K, Oleg. B, 2014, The mechanisms of nucleophilic substitution in 1-methyl-3, 4, 5-trinitropyrazole, Computational and Theoretical Chemistry, V. 1033, P. 31–42.
[18] Henry. M, Adele. R, 2012, Impact of fluorine substituents on the rates of nucleophilic aliphatic substitution and b-elimination, Journal of Fluorine Chemistry, V. 135, P. 167–175.
[19] Michele. A, Germani. R, 2013, Effects of temperature on micellar-assisted bimolecular reaction of methylnaphtalene-2-sulphonate with bromide and chloride ions, Journal of Colloid and Interface Science, V. 402, P. 165–172.
Author Information
  • Department of Chemistry, Faculty of Sciences, Al-Baath University, Homs, Syria

  • Department of Chemistry, Faculty of Sciences, Al-Baath University, Homs, Syria

Cite This Article
  • APA Style

    Joumaa Merza, Ali Alasmi. (2017). Studying the Optimum Conditions for the Synthesis the Derivatives of Salicylaldehyde with Halides Compounds. Journal of Biomaterials, 1(2), 34-39. https://doi.org/10.11648/j.jb.20170102.12

    Copy | Download

    ACS Style

    Joumaa Merza; Ali Alasmi. Studying the Optimum Conditions for the Synthesis the Derivatives of Salicylaldehyde with Halides Compounds. J. Biomater. 2017, 1(2), 34-39. doi: 10.11648/j.jb.20170102.12

    Copy | Download

    AMA Style

    Joumaa Merza, Ali Alasmi. Studying the Optimum Conditions for the Synthesis the Derivatives of Salicylaldehyde with Halides Compounds. J Biomater. 2017;1(2):34-39. doi: 10.11648/j.jb.20170102.12

    Copy | Download

  • @article{10.11648/j.jb.20170102.12,
      author = {Joumaa Merza and Ali Alasmi},
      title = {Studying the Optimum Conditions for the Synthesis the Derivatives of Salicylaldehyde with Halides Compounds},
      journal = {Journal of Biomaterials},
      volume = {1},
      number = {2},
      pages = {34-39},
      doi = {10.11648/j.jb.20170102.12},
      url = {https://doi.org/10.11648/j.jb.20170102.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.jb.20170102.12},
      abstract = {Three Dialdehydes were synthesized by the reaction of Salicylaldehyde and many Aliphatic and Aromatic Halides. The optimal condition (Catalysts, Temperature, Time of Reaction and Effect of Solvents) to get a high selective compounds and high yields have been studied. The reactions were followed by using Thin Layer Chromatography (TLC). The synthesized compounds were purified and characterized by means of High Performance Liquid Chromatography (HPLC) and spectroscopy methods: Infrared Spectra (IR), 1 H-NMR, 13C-NMR.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Studying the Optimum Conditions for the Synthesis the Derivatives of Salicylaldehyde with Halides Compounds
    AU  - Joumaa Merza
    AU  - Ali Alasmi
    Y1  - 2017/07/13
    PY  - 2017
    N1  - https://doi.org/10.11648/j.jb.20170102.12
    DO  - 10.11648/j.jb.20170102.12
    T2  - Journal of Biomaterials
    JF  - Journal of Biomaterials
    JO  - Journal of Biomaterials
    SP  - 34
    EP  - 39
    PB  - Science Publishing Group
    SN  - 2640-2629
    UR  - https://doi.org/10.11648/j.jb.20170102.12
    AB  - Three Dialdehydes were synthesized by the reaction of Salicylaldehyde and many Aliphatic and Aromatic Halides. The optimal condition (Catalysts, Temperature, Time of Reaction and Effect of Solvents) to get a high selective compounds and high yields have been studied. The reactions were followed by using Thin Layer Chromatography (TLC). The synthesized compounds were purified and characterized by means of High Performance Liquid Chromatography (HPLC) and spectroscopy methods: Infrared Spectra (IR), 1 H-NMR, 13C-NMR.
    VL  - 1
    IS  - 2
    ER  - 

    Copy | Download

  • Sections