Numerical Simulation of Flow Processes in Extrusion Tools for Partly Crosslinked and Highly Filled Plastic Melts
Composite Materials
Volume 3, Issue 1, June 2019, Pages: 9-21
Received: Oct. 22, 2018; Accepted: Feb. 1, 2019; Published: Feb. 28, 2019
Views 207      Downloads 36
Authors
Kalman Geiger, Institute for Plastic Technology (IKT), University of Stuttgart, Stuttgart, Germany
Gerhard Alfred Martin, Plastic Process Technology Dr.-Ing. Martin GmbH, Nürnberg, Germany
Andreas Sobotta, Ingenieur Office for Numerical Optimization Methods INO, Aachen, Germany
Article Tools
Follow on us
Abstract
The complex flow behaviour of partly crosslinked or highly filled polymer melts will be described with a new heuristic flow law, which takes into account the pseudoplastic flow behaviour in the regime of the viscosity curve for low and for high shear rates. The CARPOW law is a combination of the often used power and Carreau law. It describes the flow behaviour of partly crosslinked or highly filled polymer melts for the shear rate ranges in extrusion and injection molding tools. The evaluation and the presentation of the rotational and the capillary rheometrical viscosity measurements are detailed described. For highly filled or for partly crosslinked plastic melts a new defined consistency parameter is defined. It characterizes the flow obstruction in the CARPOW law. Further the temperature invariant representation of the CARPOW law is shown. This new flow law is applied for a partly crosslinked and a highly filled polymer system. The design of the extrusion tools should consider the flow behaviour described by the CARPOW law. Only with this flow law the design of tooling in the case of partly crosslinked or highly filled polymer melts is correct. Two praxis relevant examples demonstrate the calculation for an extrusion die using this new flow law.
Keywords
Shear Flow, Heuristic Flow Law, Parameter Identification, Flow Obstruction, Extrusion Dies, Numerical Flow Simulation, Dynamic Crosslinked Thermoplastic Elastomers, Wood Plastic Compounds
To cite this article
Kalman Geiger, Gerhard Alfred Martin, Andreas Sobotta, Numerical Simulation of Flow Processes in Extrusion Tools for Partly Crosslinked and Highly Filled Plastic Melts, Composite Materials. Vol. 3, No. 1, 2019, pp. 9-21. doi: 10.11648/j.cm.20190301.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Ostwald, W., Über die Geschwindigkeitsfunktion der Viskosität disperser Systeme, Kolloid-Z. 36, (1925), S.99-117.
[2]
Münstedt, H., Viskositätsdaten von Kunststoffen, Kunststoffe 68, Nr. 2, (1978), S. 92-98.
[3]
Carreau, P. J., Rheological equations from molecular network theories, Dissertation University of Wisconsin, (1968), DOI: 10.1122/1.549276.
[4]
Fritz, H. G., Geiger, K., Rheologische, thermodynamische und tribologische Grundlagen, Stoffgesetze, Daten für die Auslegung von Extrudern, Handbuch der Extrudertechnik,.Herausgeber: F. Hensen, W. Knappe und H. Potente, Carl-Hanser-Verlag, München, (1989), S. 14-77.
[5]
Geiger, K., Kühnle, H., Analytische Berechnung einfacher Scherströmungen aufgrund eines Fließansatzes von Carreauschem Typ, Rheol. Acta, 23, (1984), S. 355-367.
[6]
N. N., Softwarepaket MATLAB, Mathworks Inc., (2014).
[7]
Rabinowitsch, B., Über die Viskosität und Elastizität von Solen, Z. Phys. Chem., 145, (1929), S. 1-27.
[8]
Anderlik, R., Fritz, H. G., Compounding of Thermoplastic Elastomers using Organosilanes, Intern. Polymer Processing VII, 3, 1992, S. 212-217, DOI: 10.3139/217.920212.
[9]
Cox, W. P., Merz, E. H., Correlation of Dynamic and Steady Flow Viscosities, J. Polym. Sci., 28, (1958), S. 619-622, DOI: 10.1002/pol.1958.1202811812.
[10]
Geiger, K., Martin, G. A., Sobotta, A., Relaxationszonen in Werkzeugen, Kunststoffe, 6, (2011). S. 44-49.
[11]
Geiger, K., Ein neues heuristisches Fließgesetz, 21. Stuttgarter Kunststoff-Kolloquium, 2009, 3/V4, S. 1-15.
[12]
Perdikoulias, J., Shear Stress vs. Shear Rate as Flow Channel Design Criteria, ANTEC 2017, Anaheim CA, 8.-10. Mai 2017.
[13]
Musialek, M., Beitrag zur Vorhersage des Fließverhaltens hochgefüllter Kunststoffe, Dissertation, Universität Stuttgart, 2016.
[14]
Mazzanti, V., Rheology of Wood Polymer Composites, Dottorato di Ricerca in “Scienze Dell’Ingegneria”, Iniversita degli Studi di Ferrara, 2018.
[15]
Laufer, N., Hansmann, H., Koch, M., Rheological Characterisation of the Flow Behaviour of Wood Plastic Composites in Consideration of Different Volume Fraction of Wood, 2nd International Conference on Rheology and Modeling of Materials (IC-RMM2), IOP Conf. Series: Journal of Physics: Conf. Series 790, 2017.
[16]
de Santi, C. R., Hage, E. jr., Vlachopoulos, J., Correa, C. A., Profile Extrusion of WPC’s Supported by Rheological and Simulation Data, Anais do 10° Congresso Brasileiro de Polimeros, Foz do Iguacu, 2009.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186