Interaction Between Chitosan Solutions, Cellulose Carriers and Some of the Multi-enzyme Complexes
International Journal of Bioorganic Chemistry
Volume 2, Issue 2, June 2017, Pages: 51-60
Received: Jan. 30, 2017; Accepted: Feb. 22, 2017; Published: Mar. 9, 2017
Views 1351      Downloads 80
Elina Eldarovna Dosadina, Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
Alexey Alexeevich Belov, Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Moscow, Russia; Research Institute of Textile Materials, Moscow, Russia
Article Tools
Follow on us
This research is devoted to create and investigate the wound healing medical materials that contain proteolytic enzymes. The aim of the study is to propose a new wound dressing design “Multiferm”TM, that is based on modified cellulose, chitosan gel and proteolytic enzymes, and represent the interaction between all of the drug components for the wound treatment such as: chitosan, modified cellulose (dialdehyde cellulose, cellulose phosphor ester) and different polyenzyme complexes (proteolytic complex from hepatopancreas of crab and bromelain). The research will also propose the scheme of the obtained materials and the components interaction mechanism. This scheme is supposed to create new materials with the special properties such as: minimal loss of biological activity during the process of dressings', obtaining, and using; minimal doze of therapeutic agent; and controlled drug release. The article and the results might be useful for everyone who is interested in cellulose chemistry, properties of proteolytic enzymes and drug development for wound healing.
Chitosan, Dialdehyde Cellulose, Proteolytic Enzymes, Wound Healing, Drug Design, Controlled Release
To cite this article
Elina Eldarovna Dosadina, Alexey Alexeevich Belov, Interaction Between Chitosan Solutions, Cellulose Carriers and Some of the Multi-enzyme Complexes, International Journal of Bioorganic Chemistry. Vol. 2, No. 2, 2017, pp. 51-60. doi: 10.11648/j.ijbc.20170202.12
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
A. D. Sezer, E. Cevher, Biopolymers as Wound Healing Materials: Challenges and New Strategies, Biomater. Appl. Nanomedicine. (1992) 383–414. doi:10.5772/25177.
R. D. Sinclair, T. J. Ryan, Proteolytic enzymes in wound healing: the role of enzymatic debridement., Australas. J. Dermatol. 35 (1994) 35–41.
A. A. Belov, Textile materials containing immobilized hydrolases for medical and cosmetic purposes. Production. Properties. Application., LAP LAMBERT Acad. Pub. GmbH & Co, Germany, 2012.
A. D. Rowan, D. J. Buttle, A. J. Barrett, The cysteine proteinases of the pineapple plant., Biochem. J. 266 (1990) 869–875.
S. Yoshioka, K. Izutsu, Y. Aso, Y. Takeda, Inactivation kinetics of enzyme pharmaceuticals in aqueous solution., Pharm. Res. 8 (1991) 480–4. doi:10.1023/a:1015899011324.
B. V Vernikovskii, E. F. Stepanova, Immobilized proteases for wound cleaning, Russ. J. Gen. Chem. 82 (2012) 572–578. doi:10.1134/S107036321203036X.
P. Zhuang, D. a Butterfield, Spin labeling and kinetic studies of a membrane-immobilized proteolytic enzyme., Biotechnol. Prog. 8 (1992) 204–210.
K. C. Broussard, J. G. Powers, Wound dressings: Selecting the most appropriate type, Am. J. Clin. Dermatol. 14 (2013) 449–459. doi:10.1007/s40257-013-0046-4.
M. C. Costache, H. Qu, P. Ducheyne, D. I. Devore, Polymer-xerogel composites for controlled release wound dressings., Biomaterials. 31 (2010) 6336–43. doi:10.1016/j.biomaterials.2010.04.065.
G. S. K. Singh M., Ray A. R., Vasudevan P., Verma K., Potential biosiluble carriers, Biomaterials. 7 (1982) 495–512.
S. P. M. Castro, E. G. L. Paulín, Is Chitosan a New Panacea ? Areas of Application, in: The Complex World of Polysacchrides, 2012: pp. 3–46. doi:10.5772/51200.
T. Dai, M. Tanaka, Y.-Y. Huang, M. R. Hamblin, Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects., Expert Rev. Anti. Infect. Ther. 9 (2011) 857–879. doi:10.1586/eri.11.59.
M. Ganan, A. V Carrascosa, A. J. Martinez-Rodriguez, Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action, J. Food Prot. 72 (2009) 1735–1738.
L. C. Keong, A. S. Halim, In Vitro Models in Biocompatibility Assessment for Biomedical- Grade Chitosan Derivatives in Wound Management, Int. J. Mol. Sci. 10 (2009) 1300–1313. doi:10.3390/ijms10031300.
J. K. Suh, H. W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review., Biomaterials. 21 (2000) 2589–2598. doi:10.1016/S0142-9612(00)00126-5.
T. Kean, M. Thanou, Biodegradation, biodistribution and toxicity of chitosan, Adv. Drug Deliv. Rev. 62 (2010) 3–11. doi:10.1016/j.addr.2009.09.004.
A. A. Belov, V. N. Filatov, E. N. Belova, Medical dressing containing enzymatic complex from hepatopancreas of crab and the way of producing, 2 323 748, 2006.
Z. A. Rogovin, Chemistry of cellulose, Chimia, Moscow, 1972.
G. L. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Anal. Chem. 31 (1959) 426–428. doi:10.1021/ac60147a030.
E. E. Dosadina, A. A. Belov, Glycerine influence on the kinetic of chitosan containing cellulose matrix destruction, in: «Biochemical Physics» XIV Annu. Int. Youth Conf. IBCP RAS-Universities, 2014: pp. 50–55.
E. E. Dosadina, A. A. Belov, The obtaining of chitosan containing materials based on modified cellulose for medical use, in: Adnvances Chem. Chem. Technol., Moscow, 2014: pp. 15–17.
A. A. Belov, A. I. Korotaeva, E. A. Raspopova, Influence solutions of glycerol on the enzymatic activity of proteolytic complex of hepatopancreas crab stabilized polysaccharide compounds, in: Chem. Technol. Key Dev. Appl. Chem. Mater. Sci., Apple Academic Press, 2014: p. 380.
A. A. Belov, T. E. Ignatuk, V. V. Riltsev, Methods of determination of proteolytic activity in industrial samples of immobilized proteinases preparations, Pharm. Chem. J. 26 (1992) 101–103.
N.-A. Rangel-Vázquez, E. Guilbert-Garcia, R. Salgado-Delgado, E. Rubio-Rosas, E. G. Hernandez, Z. Vargas-Galarza, et al., Synthesis and Characterization of Chitosan Coated Dialdehyde Cellulose with Potential Antimicrobial Behavior, J. Mater. Sci. Eng. 4 (2010) 62–67.
V. I. Gumnikova, Synthesis of dialdehydedextrane and dealdehydecarboxymethilcellulose and its chemical modification, Mendeleev University of Chemical Technology of Russia, 2014.
C. J. Knill, J. F. Kennedy, Degradation of cellulose under alkaline conditions., Carbohydr. Polym. 51 (2002) 281–300. doi:10.1016/S0144-8617(02)00183-2.
R. G. Zhbankov, R. M. Marunov, N. V. Ivanov, A. M. Shishko, Spectroscopy of cotton, Nauka, Moscow, 1976.
L. F. Zemljic, S. Strnad, O. Sauperl, K. Stana-Kleinschek, Characterization of Amino Groups for Cotton Fibers Coated with Chitosan, Text. Res. J. 79 (2009) 219–226.
M. Ettenauer, F. Loth, K. Thümmler, S. Fischer, V. Weber, D. Falkenhagen, Characterization and functionalization of cellulose microbeads for extracorporeal blood purification, Cellul. (Dordrecht, Netherlands). 18 (2011) 1257–1263. doi:10.1007/s10570-011-9567-2.
M. Weinhold, Characterization of chitosan using triple detection size-exclusion chromatography and 13C-NMR spectroscopy, University Bremen, 2010.
E. V Korchagina, O. E. Philippova, Multichain aggregates in dilute solutions of associating polyelectrolyte keeping a constant size at the increase in the chain length of individual macromolecules., Biomacromolecules. 11 (2010) 3457–66. doi:10.1021/bm100990u.
N. E. Kotelnikova, S. A. Mikhailova, E. N. Vlasova, Immobilization of proteolytic enzymes trypsin and α-chymotrypsin to cellulose matrix, Russ. J. Appl. Chem. 80 (2007) 322–329.
B. Krajewska, Application of chitin- and chitosan-based materials for enzyme immobilizations: A review, Enzyme Microb. Technol. 35 (2004) 126–139. doi:10.1016/j.enzmictec.2003.12.013.
Z.-X. Tang, J.-Q. Qian, L.-E. Shi, Preparation of chitosan nanoparticles as carrier for immobilized enzyme., Appl. Biochem. Biotechnol. 136 (2007) 77–96. doi:10.1007/BF02685940.
E. Biró, A. S. Németh, C. Sisak, T. Feczkó, J. Gyenis, Preparation of chitosan particles suitable for enzyme immobilization., J. Biochem. Biophys. Methods. 70 (2008) 1240–1246. doi:10.1016/j.jprot.2007.11.005.
R. Pavan, S. Jain, Shraddha, A. Kumar, Properties and therapeutic application of bromelain: a review., Biotechnol. Res. Int. 2012 (2012) 976203. doi:10.1155/2012/976203.
G. N. Rudenskaia, [Brachyurins--serine collagenolytic enzymes from crabs]., Bioorg. Khim. 29 (2003) 117–28.
G. N. Rudenskaya, V. A. Isaev, A. M. Shmoylov, S. V. Shvets, M. A. Karabasova, A. I. Miroshnikov, et al., Preparation of proteolytic enzymes from Kamchatka crab Paralithodes camchatica hepatopancreas and their application, Appl. Biochem. Biotechnol. 88 (2000) 175–183.
E. I. Kulish, V. P. Volodina, V. V. Chernova, Enzymatic chitosan destruction (in Russian), Plast. Masses. 5 (2008) 32–38.
Z. I. M. Arshad, A. Amid, F. Yusof, I. Jaswir, K. Ahmad, S. P. Loke, Bromelain: an overview of industrial application and purification strategies, Appl. Microbiol. Biotechnol. (2014) 7283–7297. doi:10.1007/s00253-014-5889-y.
L. P. Hale, P. K. Greer, C. T. Trinh, C. L. James, Proteinase activity and stability of natural bromelain preparations., Int. Immunopharmacol. 5 (2005) 783–93. doi:10.1016/j.intimp.2004.12.007.
M. A. Krayukhin, N. A. Samoilova, I. A. Yamskov, Polyelectrolyte complexes of chitosan: formation, properties and applications, Russ. Chem. Rev. 77 (2008) 799–813. doi:10.1070/RC2008v077n09ABEH003750.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186