Propagation Regularity of Air Shock Wave in Turning Roadway
Engineering Science
Volume 4, Issue 3, September 2019, Pages: 43-53
Received: Oct. 16, 2019; Accepted: Nov. 23, 2019; Published: Dec. 5, 2019
Views 436      Downloads 136
Authors
Chunhui Song, Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, China
Xianglong Li, Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, China
Zihao Tao, Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, China
Xi Zhang, Yuxi Mining Co., Ltd. Yuxi, China
Yingming Duan, Yuxi Mining Co., Ltd. Yuxi, China
Article Tools
Follow on us
Abstract
In order to study the propagation law of explosive shock wave in underground turning roadway, the peak overpressure value in the roadway with specific turning angle was compared and analyzed by combining field monitoring experiment with ANSYS numerical simulation. The results show that the blast wave propagates forward in a stable plane wave before turning. Before the explosion air shock wave propagates to the turn, it follows the propagation law in the straight through roadway. After turning, the diffraction and reflection through the wall of the roadway will form a turbulence zone of 10-20m, and then continue to propagate forward in a stable plane wave. The turning roadway has a certain attenuation effect on the propagation of the shock wave. By analyzing the peak overpressure value before and after turning, the attenuation coefficient values of roadways at various turning angles are determined, That is, the attenuation coefficient values corresponding to the turning angles of 30°, 60°, 90°, 120° and 150° are 1.25, 1.31, 1.45, 1.50, 1.65, respectively, and the attenuation coefficient values are fitted with the roadway turning angle formula to obtain the quantitative calculation formula, which can provide reference for the safety of underground personnel, equipment and the design and production of mines.
Keywords
Explosion Shock Wave, Turning Roadway, Numerical Simulation, Attenuation Coefficient
To cite this article
Chunhui Song, Xianglong Li, Zihao Tao, Xi Zhang, Yingming Duan, Propagation Regularity of Air Shock Wave in Turning Roadway, Engineering Science. Vol. 4, No. 3, 2019, pp. 43-53. doi: 10.11648/j.es.20190403.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Jia Zhiwei, Liu Yanwei, Jing Guoxun. Propagation characteristics of gas explosion shock wave in the case of pipeline turning [J]. Journal of China Coal Society, 2011, 36 (01): 97-100.
[2]
Wu Yanjie, Gao Xuaneng. Numerical Simulation of Explosion Shock Wave and Correction of Overpressure Calculation Formula [J]. Journal of Huaqiao University (Natural Science), 2014, 35 (03): 321-326.
[3]
Gong Wei, Wang Quan, Li Zhimin, et al. Study on the propagation law of explosion shock wave in cylindrical explosive container [J]. Blasting, 2017, 34 (04): 17-21+51.
[4]
Miao Zhaoyang, LI Xiu-di, YANG Sen, YAN Zhen-gang. Discussion on the similarity law of explosion shock wave in tunnel [J]. Blasting, 2016, 33 (01): 131-136.
[5]
Li Xiudi, Zheng Yingren, Li Lizhen. The influence of charge position on the wave propagation law in the tunnel [J]. Journal of Chongqing University (Natural Science Edition), 2006, 29 (2): 95-98.
[6]
Lu Hongqin, Liu Weiqing. Analysis of the influence degree of the cross-section shape of the tunnel on the propagation law of the explosion shock wave [J]. Journal of Nanjing University of Technology (Natural Science Edition), 2009, 31 (6): 41-44.
[7]
Britan A, Igra O, Ben-Dor G, et al. Shock wave attenuation by grids and orifice plates [J]. Shock Waves, 2006, 16 (1): 1-15.
[8]
Weiss E S, Cashdollar K L, Sapko M. Evaluation of explosion-resistant seals, stoppings, and overcast for ventilation control in underground coal mining [J]. Molecular & Cellular Biology, 2002, 6 (1): 1.
[9]
Kang Y., Wei M., Yan F., Su D., Zheng D., Wang X., et al. Crack Propagation Law Affected by Natural Fracture and Water Jet Slot under Blast Loading [J]. Combustion, Explosion, and Shock Waves, 2018, 54 (6): 747-756.
[10]
Li Zhongxian, Shi Yanchao, Zhou Haozhang, Tian Li. Propagation law and overpressure load of blast wave in urban complex environment [J]. ENGINEERING MECHANICS, 2009, 26 (06): 178-183.
[11]
Zhang Jiyun. Drivage roadway damage rule of gas explosion propagation dynamics and numerical study [D]. Hebei University of Engineering, 2014.
[12]
Wei Hou, Zhiming Qu, Longjiang Pian. Numerical simulation on propagation and attenuation of shock waves in simplex turn roadway during gas explosion [J]. JOURNAL OF CHINA COAL SOCIETY. 2009, 34 (4): 509-513.
[13]
Wang Yun-Yan, Qin Bin, Zhang Qi. Characteristic propagation features of the explosion air shock wave at the corner of tunnel [J]. JOURNAL OF SAFETY AND ENVIRONMENT. 2007, 7 (3): 105-106.
[14]
Yang Shuzhao, DU Xuesheng. Study on pressure characteristics of gas explosion shock wave in driving tunnel [J]. Journal of Hennan Institute of Engineering (Natural Science Edition). 2017, 29 (4): 35-38, 43.
[15]
M. U. Yong. Numerical Simulation of Gas Explosive Shock Wave in Excavation Roadway [J]. COAL TECHNOLOGY. 2008, 27 (6): 92-94.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186